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GENERAL INTRODUCTION 

With the continuous advancements in molecular biology and modern medicine, 

organic synthesis has become vital to the support and extension of those discoveries. The 

isolations of new natural products allow for the understanding of their biological 

activities and therapeutic value. Organic synthesis is employed to aid in the 

determination of the relationship between structure and function of these natural 

products. The development of synthetic methodologies in the course of total syntheses is 

imperative for the expansion of this highly interdisciplinary field of science. 

In addition to the practical applications of total syntheses, the structural 

complexity of natural products represents a worthwhile challenge in itself. The pursuit of 

concise and efficient syntheses of complex molecules is both gratifying and enjoyable. 
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CHAPTER I 

Synthesis of the Blcylic Core of Hyperforin 

and Related Natural Products 

Introduction 

With the increasing use of dietary supplements to treat a wide range of clinical 

conditions, the understanding of the biological activities and effects of herbal 

supplements becomes necessary for efficacy and safety concerns. St. John's wort is 

commonly used as a natural remedy to treat moderate to mild depression. Although it 

effectively serves its purpose, the mechanism of action and side effects are relatively 

unknown and have only recently been investigated. 

One of the natural products present in the extracts of St. John's wort is hyperforin. 

Hyperforin has drawn substantial attention recently because it has been suggested to be 

the main constituent responsible for the antidepressant and antibacterial characteristics of 

St. John's wort. In the chemistry community it has garnered renewed synthetic interest 

due to its unique acyl phloroglucin bicyclic structure. The synthetic challenge of 

hyperforin can be categorized as follows: the generation of a [3.3.1] bicyclic skeleton and 

the enolic [5-diketone moiety. 

This chapter details the strategies to construct the bicyclic core subunit of acyl 

phloroglucin natural products and the progress towards the total synthesis of hyperforin 

and its related analogs. 
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Background 

The natural product hyperforin was first isolated and characterized1 in 1971 from 

the species Hypericum perforatum L. The exact structure2 and stereochemistry3 were 

elucidated a few years thereafter. 

.OH 

O OH 

HYPERFORIN 

The extracts of a number of Hypericum species were demonstrated as early as 

1943 to exhibit antibacterial activity.4,5 In 1959, Gaind and Ganjoo6 confirmed those 

results and identified two compounds as exhibiting activity against a number of gram 

positive organisms. Recently, hyperforin was shown to inhibit a multi drug resistant7 

strain of Staphylococcus aureus and other gram positive bacteria. Growth inhibition was 

observed for all gram positive bacteria at hyperforin concentrations as low as 0.1 pg/mL. 

Penicillin resistant and methicillin resistant Staphlycoccus aureus were susceptible to 

hyperforin whereas were resistant to cephalosporins, erythromycin, clindamycin and 

various other antibiotics. The observed low toxicity in vitro in peripheral blood 

mononuclear cells indicates potential systematic use of hyperforin. On the basis of those 

results, the natural product's biological activities have attracted renewed interest. 
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Hyperforin is present up to 5% (dry weight) in the flowers and leaves8 of St. 

John's wort, a commonly used botanical dietary supplement. St. John's wort is widely 

used to treat mild to moderate depression and represents an accepted alternative to 

synthetic antidepressants. The extracts of St. John's wort have a broad inhibitory effect9 

on the neuronal uptake of not only serotonin, noradrenaline and dopamine, but also of 

gamrna-aminobutyric acid (GABA) and 1-glutamate among others. The constituent of St. 

John's wort that exerts this biological effect has been identified as hyperforin.10 

Although the mechanism of action has not been completely elucidated, it does not act as a 

competitive inhibitor at the transmitter binding sites of the transporter proteins. Instead, 

it affects the sodium gradient11 which leads to an inhibition of uptake. The involvement 

and role of sodium and calcium ions is inferred from an experiment12 in which the 

perfusion of the sodium channel blocker tetrodotoxin inhibited the effect of hyperforin, 

whereas removal of extracellular calcium increased the effect. The effect of hyperforin 

on the gradient-driven neurotransmitter transport represents a unique mechanism of 

action in relation to that of conventional antidepressants. 

On a less positive note, hyperforin was identified as a very good ligand for the 

pregnane X receptor (PXR).13 PXR is a nuclear receptor that regulates the expression of 

cytochrome P 450 3A4 monooxygenase, which is an enzyme that is involved in the 

oxidative metabolism of over half of all pharmacological drugs.14 Cytochrome P 450 

(CYP) enzymes allow for an adaptive response to protect organisms against both 

endogenous and exogenous toxic chemicals. PXR is responsible for an important class of 

harmful drug-drug interactions.15 The activation of PXR by prescription drugs can 

accelerate the metabolism of other drugs taken concurrently, resulting in a reduction of 
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their clinical effectiveness. Immunosuppressants, HIV protease inhibitors, and various 

cancer drugs have been clinically observed to be affected by the simultaneous use of St. 

John's wort. A crystal structure determination of human PXR in complex with 

hyperforin was recently reported.16 The substantial evidence provides an explanation17 of 

the potential side effects of hyperforin. However, it is worth noting that: the researchers 

who determined the crystal structure of the hyperforin-PXR complex indicated the 

possible generation of hyperforin analogs that would not activate PXR but still have 

comparable biological activity. The isoprenyl groups located around the bicyclic core 

could be replaced with other groups that would alter the shape and conformation, 

therefore affecting the host-substrate complexation affinity with PXR. 

The structure of hyperforin suggests a terpenoid origin.2 Recently, the 

biosynthesis'8 of hyperforin (Figure 1) was proposed using isotopomer composition 

OH O 

1 

HO. OH 

OH 0 

Hyperforin 

Figure 1. Proposed Biosynthesis of Hyperforin 
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analysis experiments using 13C-Iabeled glucose. The proposed biosynthesis involves a 

phloroglucinol unit and 5 isoprenoid moieties, which are derived via a non-mevalonate 

pathway (Figure 2). 

o 
A, 

O 

COO- H^Y^O-P-O" 
OH O' 

C02 OH 
° 

dxs 
O-P-O" 

OH O" 

ispC O 

OH OH 0~ 

ispD 
ispE 
ispF 

^ ̂O-P-O-P-O" ^ lspH 

6-  o-

o o 
^-^O-P-O-P-O" 

on 6" cr 
ispG _ /  

OH OH 

Figure 2. Non-mevalonate Pathway 

The acyl phloroglucinol moiety is generated by a polyketide type mechanism 

beginning with 2 units of pyruvate (Figure 3). 

o o o o 
A + A 

" COO- * COO-

C0z 

COO" 
HO 

O 

COO" 

0 OH 

i HOgC 
*x^/SCoA 

O o 

o 
C0z 

SCoA 
O 

SCoA 

Figure 3. Biosynthesis of the acyl phloroglucinol unit 
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The construction of the bicyclic structure of hyperforin is dependent on the 

presence of the isoprenoid moieties. Although the isoprenyl units of hyperforin are 

necessary as part of the biosynthesis, they might not be for the biological activities; 

therefore, analogs could possibly reveal biological activity independence of those groups. 

Since the first structure elucidation of hyperforin and related compounds, there 

have been only a few published reports of synthetic efforts towards the fully 

funtionalized bicylic core. There have been no total syntheses of hyperforin or any of its 

related bicyclic phloroglucin natural products. 

In 1986 Effenberger and co-workers19 reported the synthesis of a bicyclic 

phloroglucin compound in 44% yield from the enol silyl ether of cyclohexanone and 

malonyl dichloride (Scheme 1). The use of malonyl dichloride allows for the 

construction of the bicyclic structure and the introduction of the (5-diketone functionality 

directly. 

OTMS 
O O 

+ 

O 

Scheme 1 

In 1999, Nicolaou and co-workers20 reported a synthetic route to a functionalized 

[3.3.1] bicyclic core of garsubellin A, a natural product analog of hyperforin. The 

synthesis commenced with commercially available 1,3-cyclohexanedione. In eight steps, 
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bicyclic lactone 1, which contained the carbon skeleton of the core structure, was 

constructed. The key cyclization of prenyl lactone 1 was Lewis acid mediated (Scheme 

2). The addition of A7-(phenylseleno)phthalimide (N-PSP) along with SnCL# 

functionalized the carbon adjacent to the carbon with two methyl groups in compound 2. 

SePh 

CO2M6 COgMs 

Scheme 2 

Selective reduction of the bridged ketone of compound 2 yielded a bridged 

alcohol, which was subsequently alkylated with trans-1,2-bis(pheny lsulfony I)ethylene 

(Scheme 3). The reaction of BiijSnH and AIBN with the vinylogous sulfonate 3 

produced tetracycle 4. 

1)LiAIH(0?-Bu)3 

2) LiHMDS 

Ph02S SePh 

C02Me Bu3SnH 0=K^///fx^C02Me 

AIBN 

PhO?S' 
Z" 

Scheme 3 
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Reduction with excess DIBAL produced a triol, which was selectively 

monoprotected with TBSC1. The ensuing oxidation of the hindered primary alcohol with 

(bisacetoxy)iodobenzene formed aldehyde 5 (Scheme 4). The addition of 

isopropylmagnesium bromide onto the aldehyde effected simultaneous ^-elimination of 

the sulfone side chain. Selective hydrogénation with hydrogen over platinum oxide 

produced isopropyl alcohol 6. 

OH 

HO^ /\ O 

1) DIBAL TBSO 

2) TBSCI 
3) Phl(OAc)2 Ph02S 

1)  -^MgBr 

TBSO 

2) H2, Pt02 

SOgPh 

Scheme 4 

Two of the hydroxy groups of triol 6 were then protected with triphosgene. The 

resulting compound was hydrogenated to produce intermediate 7 (Scheme 5). After two 

further transformations, enone 8 was obtained. To introduce the final functionality of the 

bicyclic core, a [2+2] photocycloaddition was performed with 1,1 -dimethoxyethene. 

Cyclobutanone 9, upon treatment with mild acid in methanol and subsequent Baeyer-

Villiger oxidation, produced the functionalized [3.3.1] core 10 of garsubellin A. 

Although this synthetic strategy does contain a novel bicyclic cycloaddition, the large 

number of steps to the core structure would ultimately limit the utility of the route 

towards the total synthesis of substituted phloroglucin natural products. 
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o 
1) CI3C0 0CCI3 

2) H%, Pd-C 

HO. 
1 ) TPAP, NMO TBSO. TBSO. 

2) Se02 

S02Ph 

7 

S02Ph 

1) PTSA, MeOH 

2) mCPBA 

SOzPh 

1)/?V, H3CcAoCH3 

2) H2S04 

TBSO. 

S02Ph 

9 

Scheme 5 

In 2001, a more direct synthetic approach to the functionalized bicyclic core (14) 

was reported21 (Scheme 6). The synthesis begins with the conversion of 2,2-dimethyl 

cyclohexanone to enol silyl ether 11 in eight steps. A Lewis acid-catalyzed Mukaiyama 

aldol condensation of compound 11 with 3-nitropropanal dimethylacetal produced allenyl 

cyclochexanone 12. 
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o 
8 Steps 

TiCL 
.OTMS 

OMe 

OMe 

NO; 
11 12 

OMe 

Scheme 6 

With compound 12 in hand, the key intramolecular nitrile oxide-allene [3+2] 

cycloaddition was achieved as a single diastereomer 13 in 40% yield (Scheme 7). 

Subsequent reduction with methanolic Raney nickel produced the functionalized bicyclic 

core 14. 

PhNCO H2, MeOH 

MeO. NH 

14 

Scheme 7 

The synthesis presented utilizes a very unique intramolecular nitrile oxide-allene 

[3+2] cycloaddition to construct the bicyclic core. The formation of a single 

diastereomer 13, from a mixture of two diastereomers that entered the reaction, indicates 

the need for the nitropropyl group to be axial in order for the cycloaddition to occur. 



www.manaraa.com

12 

With the inclusion of an additional group located at the carbon alpha to the carbonyl, 

stereoselectivity could present problems. 

Although these two synthetic efforts achieve the construction of the 

functionalized bicyclic skeleton, the |3-diketone moiety is not generated. The most recent 

synthetic route to the bicyclic core of garsubellin A that addresses this synthetic 

challenge was reported in 2002 by Shibasaki and co-workers.22 The synthesis centered 

upon the Michael addition-elimination of a 3-chloroacrylate compound onto diketone 15 

and subsequent Claisen condensation to produce lactone 16 (Scheme 8). The yield of the 

key cyclization was 20%. 

With the construction of lactone 16, albeit in low yield, the rearrangement was 

explored by first protecting the olefin of the enone with a silicon atom (Scheme 9). Later 

deprotection could be facilitated by a modified Tamao oxidation and elimination using 

mCPBA and tot-butyl ammonium fluoride. Transformation to the thiol ester 17 was 

followed by reduction under Fukuyama conditions to the aldehyde 18. Compound 18 

was then treated with base (KaCOi/MeOH) and oxidized with Dess-Martin periodinane 

and subsequent oxidation and elimination of the pentamethyldisilyl group produced 

O 

1) ®uOK 

15 16 

Scheme 8 
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enone 19. Intermediate 19 was subjected to an intramolecular Wackcr-type oxidation to 

produce the tetrahydro furan ring of the core structure. 

o 

1)Me5Si2Li EtgSiH 
16 

2) Me2AISEt 
MegSio 

Pd/C 

Me5Si2' 

3 Steps 

O 
Na2PdCI4 O. 

O 

19 

Scheme 9 

Oxidative vinyl iodide formation, followed by Stille coupling with 

tributylprenyltin, produced the functionalized bicyclic core of garsubellin A (21). To 

date, this synthesis has the most applicability to the natural product garsubellin A. The 

use of the intramolecular Wacker-type oxidation limits the synthetic applicability to other 

oxidized phloroglucinols, such as hyperforin and nemosorone. 

The focus of the synthetic strategies will address the concise formation of a 

functionalized bicyclic intermediate, which can be converted in a few steps to the enolic 

P-diketone subunit. Keeping in mind various other bicyclic acyl phloroglucin subunit 
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bearing natural products, the route should be general enough to be applicable to their 

syntheses. Figure 4 displays some natural products that contain the synthetic objective. 

Hyperfonn Garsubellin A 

^.OH 

v Yr 
11 

L o 0 h 

Papuaforln A Nemorosone 

Figure 4. Some Bicyclic Phloroglucin Natural Products 
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Results and Discussion 

Hyperforin's challenging structure and diverse biological activities prompted a 

synthetic study of the bicyclic phloroglucin core subunit. The general strategy developed 

would then be applied towards the total synthesis of the natural product hyperforin and 

related analogs. 

The initial strategy towards the synthesis of the target molecule relied on a 

cyclization reaction reported by Effenberger (Scheme 1). The utility of malonyl 

dichloride allowed for the generation of the bicyclic skeleton and introduction of the 

enolic (3-dikctone in one step. 

"YY* 

Hyperforin Bicyclic Core 

OTMS 
o o 

HO^^O 

+ 
Y 
o 

Scheme 1 
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The success of this remarkable cyclization prompted an investigation of the 

reaction with «-substituted cyclohexanone enol silyl ethers (Figure 5). 

H 

O. 

R" 

.OH O O 

0 

R' 
R 

O O 

C|AAc, 

Figure 5. Retro synthetic Analysis 

The exploration began with the reaction of malonyl dichloride with the enol silyl 

ether of 2-methylcyclohexanone (1) under the conditions specified by Effenberger 

(Scheme 2). However, the reaction yielded only 2-methylcyclohexanone. The kinetic 

enol silyl ether of 2-methylcyclohexanone (2) and compound 3 were also allowed to react 

with malonyl dichloride and, likewise, did not yield the bicyclic product. 

H 
OTMS 

O O 

C|AACI H' 

,OH 

O 

OTMS 
O O 

OTMS 

C02Et 
+ 

CI 

O 0 

AA CI 

O, 

H' 
O 

.OH 

"COgEt 

Scheme 2 
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Altering the temperature did not affect the outcome of the reaction. The addition 

of Lewis acids, such as TiCl4 and SnCl4, yielded only starting materials. It is of interest 

to note that Stoltz23 recently reported the use of bis(cyclopentadienyl)hafhium dichloride 

to mediate the cyclization of a substituted methyl enol ether with malonyl dichloride in 

25% yield (Scheme 3). The use of that specific Lewis acid allowed for the construction 

of a bicyclic compound with quaternary bridgehead carbons. However, no acyl 

bridgehead compounds were reported. 

Cp2HfCI2 

Scheme 3 

With these disappointing results, attention was focused towards the construction 

of the bicyclic |3-diketone compound through a stepwise approach. The retrosynthetic 

analysis (Figure 2) indicates that the bicyclic skeleton could be obtained by a Robinson 

annulation of acrolein onto a substituted cyclohexanone. With the functionalized bicyclic 

core constructed, the |3-diketone transformation would be explored to obtain the target 

molecule. 
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R 

Figure 6. Retrosynthetic Analysis 

To begin the synthetic investigation, the Michael addition24 of ethyl 2-

cyclohcxanone carboxylate onto acrolein was achieved with catalytic amounts of sodium 

ethoxide to produce aldehyde 4 (Scheme 4). Two equivalents of sodium ethoxide 

facilitated the intramolecular aldol condensation of aldehyde 4 to produce alcohol 5. 

Acid catalyzed conditions (I ICI, AcOH in various solvents) failed to produce compound 

5. The one pot conversion of ethyl 2-cyclohexanone carboxylate to compound 5 was 

unsuccessful with excess sodium ethoxide. Subsequent oxidation of 5 with pyridinium 

chlorochromate over Celite produced ketone 6 (72% overall yield from ethyl 2-

cyclohexanone carboxylate). 

o o 
cat. NaOMe 

OEt 

A 1 %\r\)Et 2eq. NaOEt 

4 
CHO 

"tm 
OEt PCC 

0;: 

H' 
.OEt 

O 

Scheme 4 
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Conversion to enone 7 was achieved using conditions developed by Larock and 

Kraus25 (Scheme 5). With bicyclic enone 7 synthesized, transformation to the enolic (3-

dilcetone moiety was explored. 

1) TMSCI, Et3N 

2) 10% Pd(OAc)2, 
0%. DMSO 

Oxidation 

Scheme 5 

The most direct transformation of a,(3-unsaturated carbonyl compounds to (3-

dilcetones is the palladium(II)-catalyzed Wacker-type oxidation (Scheme 6) introduced by 

Tsuji 26 

o (0.2 eq.) Na2PdCI4 

(BuOOH, AcOH 

O OH 

Scheme 6 

The use of Tsuji's protocol proved to be unsuccessful. Enone 7 when treated with 

sodium tetrachloropalladate at temperatures up to 110 °C yielded only starting materials 
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(Scheme 7). The use of classical Wacker oxidation conditions (PdCb) also failed to yield 

the (3-diketone. There are no literature reports on the direct intermolecular oxidation of 

cyclic «^-unsaturated carbonyl compounds to cyclic [3-diketones. 

OEt 
(0.2 eq.) Na2PdCI4 

x » 
fBuOOH, AcOH O 

.OEt 

O 

Scheme 7 

In view of the unsuccessful attempts to directly convert the bicyclic enone into the 

desired (3-diketone, enone 7 was converted to epoxide 8 with mCPBA. Noyori 

demonstrated27 that cyclic a,P-epoxyketones can be converted to (3-diketones (Scheme 8) 

with catalytic amounts of Pd(PPh^4. 

Scheme 8 

However, the treatment of bicyclic epoxide 8 with Pd(PPh3)4 and 1,2-

bis(diphenylphosphino)ethane did not produce the desired bicyclic p-diketone (Scheme 

9). It is worthwhile to point out that unsuccessful palladium-catalyzed oxidations of 
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complex enones and a,[3-epoxyketones to p-diketones have been documented in the 

literature.28 The structural generality of these transformations is limited. 

mCPBA 
H 

O 

o 

8 

„OEt 
Pd(PPhs)4 

dppe 
O 

,OEt 

Scheme 9 

Since rearrangement of bicyclic epoxyketone 8 failed to yield the target molecule, 

compound 8 was converted to P-hydroxyketone 9. Chromium diacetate was first used to 

facilitate the conversion; however, P-hydroxyketone 9 (Scheme 10) was not formed. The 

use of aluminum amalgam furnished the desire compound 9 in only 5% yield. 

Cr(OAc)2 

Al/Hg 

OEt 

Scheme 10 

With P-hydroxy ketone 9 constructed, the oxidation was explored. The use of 

pyridinium chlorochromate (PCC) degraded the starting material (Scheme 11). Milder 
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conditions, such as the Dess-Martin and Svvern oxidations, were also employed, but were 

unsuccessful. 

Since oxidative conditions failed to produce the desired compound, the use of an 

oxygen atom equivalent was investigated. The initial efforts relied upon the conjugate 

addition of a cyano functional group, which might then be converted to a carbonyl using 

known conditions. The use of P-cyanolcetones as P-diketone equivalents has not been 

explored in the literature. 

The investigation began with the conjugate addition of a cyano group onto 4,4-

dimethyl-2-cyclohexenone to make the corresponding cyano silyl enol ether intermediate 

(Scheme 12). Subsequent treatment under conditions for the conversion of cyanides into 

ketones yielded 4,4-dimethyl-1,3-cyclohexanedione (10) in a 64% yield. 

9 

Scheme 11 

O OTMS O 

Et2AICN 

2) NaOH TMSCI, Et3N 

10 

Scheme 12 



www.manaraa.com

23 

With the successful use of this methodology to produce a cyclic fi-diketone, the 

strategy was applied to a bicyclic system. However, various conditions used to effect the 

conjugate addition of a cyano group failed with the bicyclic enone 7. 

These unsuccessful attempts prompted the usage of a more nucleophilic oxygen 

equivalent. Sulfur atoms are very good nucleophiles; therefore, the Michael addition 

onto bicyclic enone 7 was plausible. Thiophenol was used because the loss of the 

unsaturation during the conjugate addition could be regenerated by an n-

chlorosuccinimide mediated Pummerer-type oxidation.29 The strategy was initiated with 

triethylamine catalyzed addition of thiophenol onto enone 7 (Scheme 13) to produce 

ketone 11 in 75% yield. 

OEt 
PhSH 

Et,N 

H, ^ ^ /OEt 

O 

11 

NCS 

Scheme 13 

The oxidation of compound 11 with NCS in carbon tetrachloride produced enone 

12 as expected. Compound 12 has the same oxidation state as a (3-diketone. Substitution 

of the sulfur moiety by an oxygen moiety would produce the desired bicyclic compound 

(Scheme 14). However, the use of an alkaline base could enhance the possibility of the 

bicyclic compound undergoing a retro-condensation reaction at the strained bridgehead. 



www.manaraa.com

24 

igY 
12 

.OEt 

OR 

»TY 
OEt 

O O 

-X-

,OR 

^o; O 

13 (R = Me) 

OR O O O 

PhS-̂ \̂ V^OEt 

Scheme 14 

The use of potassium trimethylsilanoate (KOTMS), sodium allyloxide, and 

sodium benzyloxide produced no reaction with enone 12. Silver nitrate,30 sulfuric acid31 

or mercuric chloride did not produce the desired |3-diketonc. Fortunately, sodium 

methoxide afforded bicyclic enol ether 13. The displacement of the thiophenyl group 

with methanol proceeded in 47% yield. 

The Reaction of compounds 12 and 13 with aqueous potassium hydroxide 

converted the bridgehead esters into carboxylic acids. The final transformation to the (3-

diketone bicyclic core required demethylation of the enol ether of compound 13. 

Treating compound 13 with aqueous HC1 at various temperatures yielded no reaction. 

Boron tri fluoride diethyl etherate and Nal also did not produce the demethylated product. 

However, methyl enol ether 13 was treated with iodotrimethylsilane to produce the 

bicyclic phloroglucin core 14 in 78% yield (Scheme 15). 
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Although the synthesis of the bicyclic core was achieved in eight steps, the model 

system was unsubstituted. Hyperforin bears many prenyl groups located around the core 

subunit. In order to make a model system more sterically similar to the natural product, 

more substituents around the bicyclic core would need to be introduced. 

OH 

Hyperforin 

«'YV 

4* 
Bicyclic Core 

The use of a more substituted cyclohexanone starting material would introduce 

the various alkyl groups. Thus, the synthesis began with the alkylation32 of 1,3-

cyclohexanedione by ethanol (Scheme 16). Subsequent treatment with 5-bromo-2-
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methyl-2-pentene and n-butyllithium produced the known isoprenyl cyclohexenone.33 

The conjugate addition of methyl cuprate, followed by the addition of methyl 

cyanoformate yielded the substituted methyl 2-cyclohexanone carboxylate 15. 

PTSA nBuLi 

1) MeaCuLi 

Scheme 16 

Substituted compound 15 was then treated with sodium methoxide and acrolein. 

However, the Michael addition failed (Scheme 17). The presence of the methyl and 

isoprenyl groups sterically hinders the enolate, resulting in no reaction with acrolein. The 

steric effects on the alkylation of 3,3-disubstituted cyclohexanone carboxylates is well 

documented.31 For example, the allylation of methyl 3,3-dimethyl cyclohexanone 
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carboxlate results in the O-allylation affording 16, and requires a thermal Claisen 

rearrangement to produce the C-allylated compound 17. 

cat. NaOMe 

Scheme 17 

With the apparent difficulty of generating a bicyclic compound from substituted 

cyclohexanones, a different approach was developed. The synthetic route (Figure 7) was 

based on the biosynthetic pathway. The key feature of the strategy emphasizes the 

symmetrical nature of the bicyclic precursor intermediate. The bicyclic core can be 

constructed by making the carbon-carbon bond at either quaternary bridgehead carbon. 

Disconnection b would resemble the biosynthetic pathway, whereas disconnection a 

utilizes a symmetrical intermediate 18. 
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Figure 7. Retrosynthetic Analysis of a Symmetrical Intermediate 

The desired conversions would require the alkylation addition of the enolate of 

compound 18 or 22. However, the enolate of compound 22 would be much more stable 

and less nucleophilic than the enolate of compound 18. Compound 18 could presumably 

be made by the allylic oxidation of compound 19. A Birch reduction of benzoate 20 or a 

bis 0-alkylation of cyclohexanedione 21 could afford compound 19. 
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The synthesis began with the conversion of 2-methyl-1,3-cyclohexanedione into 

the known 2-allyl-2-methyl-1,3-cyclohexanedione35 (23) with sodium hydroxide and ally! 

bromide. At this point, the te/7-butyldimethylsilyl (TBS) group was chosen as the 

protecting group for the enol ethers (Scheme 18). A durable protecting group was 

necessary for the subsequent oxidation, but it also had to be easily cleaved afterwards. 

Compound 24 was produced by treating cyclohexanedione 23 with TBS triflate and 

triethylamine. The stage was set for the allylic oxidation to produce compound 25. 

Various chromium-based oxidants described by Schultz36 were used to oxidize 24; 

however, either starting material was recovered or there was compound degradation 

during the course of the reaction. 

NaOH 

TBSTf 

23 24 

X Ox. 

O 

25 

Scheme 18 
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Since the allylic oxidation failed to give the desired enone 25, a bis vinyl halide 

compound 27 was targeted (Figure 8). The halogens at the 2 and 6 positions would be 

susceptible to substitution, since (3-halo-enones are highly reactive. 

HQ-
Hydrolysis 

> 

26 27 

CI 

Figure 8 

The hydrolysis of compound 26 should yield the desired product. However, 

methyl 2,6-dichlorobenzoate (28) could not be reduced under various Birch conditions. 

The Birch reduction of aryl halides has not been thoroughly investigated. With the 

failure of the previous compounds to produce a dienone, a methyl enol ether was chosen. 

The synthesis (Scheme 19) began with the Birch reduction of methyl 2,6-

dimethoxybenzoate, followed by alkylation with 1 -chloro-3 -iodopropane to produce 

compound 29. The allylic oxidation with pyridinium dichromate and terf-butyl 

hydroperoxide produced the best yield (72%) of dienone 30. Pyridinium chlorochromate 

and chromium hexacarbonyl produced the product in lower yields. 
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1) Na, NH3 

OMe 2) IfCHgbCI fBuOOH ^ OMe 
C02Me GOgMe 

Scheme 19 

With the construction of dienone 30, demethylation and cyclization would yield 

the bicyclic core. The demethylation of (3-methoxyenones should be very 

straightforward, since they are vinyligous methyl esters (Scheme 20). Unfortunately, 

under various conditions (HCl, H2SO4, HI, PTSA, BFs'OEti, TMSI, AgOTf, HgCh) only 

starting materials remained. Even at temperatures of 170 °C with concentrated HCl, 

compound 30 remained intact. The sturdiness of compound 30 was quite remarkable. 

MeO 

30 

HO 

31 

Scheme 20 

Since demethylation failed to produce compound 31, Michael addition of an 

alkoxide onto compound 30 would have the same effect (Scheme 21). The conjugate 
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addition of sodium methoxide might produce bis-acetal 32, which upon deprotection 

would yield the desired product. Unfortunately, the use of sodium methoxide failed to 

produce the desired conjugate addition. 

MeO ^ "OMe 
CO2M6 

NaOMe 
X » MeO 

MeO OMe 
COoMe 

o-" X" 
C02Me 

HO X 0H 

C02Me 

32 31 

Scheme 21 

Sodium allyloxide was also used in an attempt to Michael add to enone 30. With 

the addition of ally! groups, dealkylation would procédé by a thermal Claisen 

rearrangement (Scheme 22) to produce substituted intermediate 35, a product that more 

closely resembles the natural product. 

"ONa 

MeO X ~OMe 
CO2M6 

HO ^ OH 
C02Me 

30 34 35 

Scheme 22 
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Unfortunately, compound 30 did not react with sodium allyloxide. Although 

compound 34 was never prepared by this sequence, the ally! groups could be introduced 

at an earlier stage before the allylic oxidation. 

To prepare compound 34 by a modified strategy, methyl 2,5-dihydroxybenzoate 

was first treated with potassium carbonate and allyl bromide (Scheme 23) to prepare the 

diallyl ester 36. Under Birch conditions, compound 36 failed to give the reduction 

product 37. Using lithium instead of sodium did not alter the outcome of the Birch 

reduction. 

CO2M6 

Scheme 23 

Because of problems encountered during the reduction and deallcylation steps, an 

alternative protecting group was explored. It seems that the reduction and oxidation steps 

were specific to the alkyl enol ethers. Methoxymethyl ethers are another alternative to 

the previously used methyl ethers, since they are sturdy enough to withstand oxidation 

conditions but labile enough to be easily deprotected. In conjunction with our previous 

strategy, methoxymethyl (MOM) protecting groups were thus used. 

The protection (Scheme 24) of methyl 2,6-dihydroxybenzoate with chloromethyl 

methyl ether (MOMC1) afforded compound 38. Subsequent Birch reduction and 

alkylation produced 39. Allylic oxidation with PDC and terr-butyl hydroperoxide yielded 
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enone 40. The product was purified by florisil column chromatography. With the 

construction of compound 40, the remaining transformations would be the deprotection 

of the MOM groups and cyclization. To remove the MOM groups, compound 40 was 

treated with aqueous hydrochloric acid to produce the triketone 41. 

NaH, 
MOMCI 

2) l(CH2)3CI 

PDC, 
f-BuOOH 

Scheme 24 

The cleavage of the MOM groups was successful; however, the triketone formed 

was very polar and difficult to purify by column chromatography. The enolic protons of 

tautomer 41 are very acidic. The acidity of the two enolic protons is comparable to 

carboxylic acids. Treatment of crude compound 41 with mild bases (Scheme 25), such as 

potassium carbonate and triethylamine, produced messy mixtures that did not contain the 

desired bicyclic compound. 
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Due to the solubility of intermediate 40, cyclization to the bicyclic compound was 

problematic. To circumvent this difficulty, the deprotection and cyclization steps might 

be effected in a single transformation. In order to explore this possibility, the chloride 

atom of 40 was first converted (Scheme 26) to a better leaving group to facilitate the 

cyclization. Compound 40 when treated with sodium iodide in acetone produced 

compound 42. 

O O 

0' 

CI 

o 
C02M6 

1 
0^"0^ 

Nal 

C02Me 

40 42 

Scheme 26 

Compound 42 was first treated with aqueous acid to deprotect the MOM enol 

ethers. Although cleavage of the MOM groups did occur, the cyclization was still 
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unsuccessful (Scheme 27). Instead of cleaving the MOM groups first, a primary 

carbocation might first be formed from the iodide, with the idea that the enol ethers 

would be nucleophilic enough to intercept this intermediate. 

x||/xC02Me 

MOMO' OMOM 

'OMOM 
CO2M6 

Scheme 27 

The biomimetic synthesis to generate the bicyclic compound from symmetrical 

intermediate 41 proved to be futile. The cyclization ultimately failed due to the physical 

properties of triketone 41. With this in mind, the next strategy to construct the bicyclic 

compound had an alternative carbon-carbon bond disconnection. 

The construction of the bicyclic subunit could be attained from the intramolecular 

condensation of intermediate 43, which in turn, could be made from a substituted 

cyclohexanone intermediate (Figure 9). The generation of the bicyclic compound would 

also simultaneously establish the desired (3-diketone functionality. 
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Figure 9. Retrosynthetic Analysis 

A key element to the success of the condensation of compound 43 is the relative 

orientation of the methyl ketone and the ester, which would act as the electrophile. In 

order for the condensation to occur, the ketone and the ester must be in the axial 

positions. The presence of geminal diesters will ensure that possibility. 

The synthesis (Scheme 28) thus began with the generation of diester16 44 from 

ethyl 2-cyclohexanone carboxylate with sodium hydride, magnesium perchlorate, and 

methyl chloroformate. Subsequent methylation with methyl iodide produced compound 

45. The acylation of 45 with acetyl cyanide produced the bicyclic precursor 46. The 

allyl analog 48 was similarly constructed. The acylation of the ally! diester intermediate 

produced very low yields of 48. However, when the acylation of 44 preceded the 

allylation, compound 48 was obtained in high yields. Compound 47 could also be 

methylated to yield compound 46. 
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O 
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C02Et 
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1) LiN(TMS)2 

2) CNCOCH3 

Scheme 28 

With the synthesis of compounds 46 and 48, the key condensation reaction was 

explored. Sodium hydride was first used (Scheme 29). The reaction was first conducted 

at 0 °C and then boiled in THF. Surprisingly, only starting material remained with no 

trace of the desired product. Compound 48 was then treated with triethylamine in 

toluene. This was also unsuccessful. Other bases, such as potassium /erf-butoxide, 

lithium diisopropylamide, and lithium tetramethylpiperidine, also failed to produce the 

condensation product. The combination of titanium tetrachloride, tributylamine, and 

TMSC1 also did not produce the desired product. 
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Scheme 29 

To increase the electrophilicity of the ester, TMSTf was added along with 

triethylamine. The TMS group should coordinate with the ester carbonyl, activating it to 

nucleophilic attack by the enolate of the methyl ketone. Once again, the reaction failed to 

produce the bicyclic compound. Interestingly, the enol silyl ether 49 of the starting 

material was not produced under these conditions either. 

Harnessing the oxidized phloroglucin intermediate 50 proved to be difficult. The 

unpredictable reactions of the densely oxidized bicyclic phloroglucins forced the 

evaluation of other strategies. 

TMSO 

49 

O O 

R R R R 

50 
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Because of these difficulties, the P-diketone functionality should be introduced 

after the bicyclic formation. The difficulties encountered during the attempted 

transformation of the bicyclic enone to the p-diketone indicated a need for a flexible 

method that could be applied towards other phloroglucin natural products. The 

limitations of conjugate addition to the bicyclic enone required indirect methods to 

produce the desired P-diketone (Schemes 13 and 14). In order to circumvent these 

obstacles, the idea of generating a P-bromo enone was studied. 

O. OH 

A presence of the bromine atom would increase the electrophilicity of the enone, 

making it more susceptible to conjugate addition. In essence, the P-bromo enone's 

electrophilicity would be comparable to acid halides. 

The retrosythetic analysis (Figure 10) indicates that the p-diketone bicyclic 

compound could be made from P-bromo enone 51, which in turn, could be made from a 

functionalized bicyclic compound, such as 52. 

OH 

"COzR 

R 

CO2R 
o 

"CO,R 

R 
52 

COzR 

R 
R 

53 

Figure 10. Retrosynthetic Analysis 
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The key transformation of the strategy is the functionalization of the bicyclic 

olefin 52. There is no literature precedence for the direct construction of P-bromo enones 

from disubstituted olefins. In fact, most P-halo enones (Scheme 30) are made from p-

diketones38 with halogenating reagents, such as oxalyl chloride or phosphorus tribromide. 

Another aspect of this strategy is the construction of the bicyclic compound 52. 

The olefin will serve as a handle to functionalize the compound. The starting point of the 

synthesis might be a substituted cyclohexanone. Compound 53 allows for the 

incorporation of the alkyl and prenyl groups of the natural product at the onset of the 

synthetic route. 

To begin the synthesis, the cyclization to form olefin 52 was investigated. Kende 

first reported the generation of bicyclic compounds from enol silyl ethers bearing allyl 

groups39 using palladium acetate in acetonitrile (Scheme 31). Kende had originally 

intended to generate enone 55 when unexpectedly, cyclization occurred to produce a 

bicyclic compound. 

Scheme 30 
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Pd(OAc)2 

Scheme 31 

Spiro compounds were also made with these reaction conditions. The use of 

stoichiometric quantities of palladium was not attractive for our synthetic strategy, since 

the cyclization step would be fairly early in the synthesis. 

An alternative reagent is manganic triacetate, which has been extensively 

investigated by Snider and co-workers.40 In 1968 manganese(III) was shown to be a one-

electron oxidant41 in acetic acid. The oxidative addition of acetic acid to alkenes 

(Scheme 32) has provided the basis for a general approach to oxidative free-radical 

cyclization. 

° + Mn(OAc)a 
OH » 

AcOH 

Scheme 32 
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The mechanism42 for the manganese reaction involves an enolization of the 

carbonyl of the substrate and subsequent electron transfer with loss of manganese(II) to 

produce an a-carbonyl radical (Scheme 33). The enolization is the rate determining step; 

whereas, the electron transfer is rapid. The attack of the radical onto the alkene is also 

rapid. Once the cyclization occurs, the secondary radical formed can be oxidized by 

Mn(IIl); however, this is slow and can compete with other reactions. Heiba and Dessau43 

demonstrated that Cu(II) oxidizes the radical formed 350 times faster than Mn(III) and 

that the two reagents are compatible. The use of Cu(OAc)% promotes oxidative 

elimination to yield the corresponding olefin. 

Mn(OAc)3 

«WV» <wv 
ZWV~ <WU» 

Cu(OAc)z 

Scheme 33. The Oxidative Free-radical Cyclization Mechanism 

Manganese(III) mediated oxidative free-radical cyclization might serve a couple 

of purposes. First, it might enable the construction of the bicyclic structure with a handle 

for the P-diketone functionality. Secondly, the generality of the reaction allows for 
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various substituted substrates to undergo the cyclization. Recall that the alkylation of 

3,3-disubstituted cyclohexanone carboxylates, such as 56, is problematic due to the steric 

hindrance of the enolate. The alkylation can occur on either the 2-carbon or the enolate 

oxygen depending on the electrophile (Scheme 34). The presence of substituent^ at the 

3-carbon will increase the likelihood of O-alkylation occurring. 

However, an O-allylated product can be thermally rearranged (Scheme 35) to the 

C-allylated compound as demonstrated by Rothberg.34 This will enable the strategy to be 

expanded to more complex systems. 

OAlk 

Scheme 34 

•CO2M6 

Scheme 35 
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The synthesis began with the allylation of 2-substituted cyclohexanones. The 

allylation of ethyl 2-cyclohexanone carboxylate with sodium hydride and ally! bromide 

produced compound 58a in 72% yield. When the same reaction conditions were applied 

to 2-benzoylcyclohexanone, the yield of compound 58b was very poor (30%). Using 

phase transfer conditions44 of sodium hydroxide, tetraethylammonium bromide and ally! 

bromide, compound 58b was produced in a 65% yield (Scheme 36). The use of various 

2-substituted cyclohexanones was to explore the cyclization's scope and limitations with 

regard to the functionality of the side chain carbonyl. It is worthwhile to investigate the 

differences that an ester might have in relation to a ketone. Furthermore, the bulky 

benzoyl group in compound 58b is present in the natural product nemosorone. 

Once the allylated compounds were constructed, the cyclization with manganic 

acetate and copper acetate was explored. The reaction was performed in acetic acid and 

heated at 80 °C for 18 hours. The oxidative radical cyclization produced 60% of the 

desired bicyclic olefin 59 and less than 10% of the exo-cyclization product 60. 
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Scheme 36 

With bicyclic olefin 59 in hand, the exploration of the p-diketone transformation 

was undertaken. The initial strategy relied upon the conversion of an enone into a P-

bromo enone. Ally lie oxidation of olefin 59b with dry chromium trioxide in 3,5-

dimethylpyrazole failed to produce the desired enone. The use of pyridinium dichromate 

and tert-butyl hydroperoxide gave enone 61b in 80% yield. 

The bicyclic enone 61b would now be subjected to bromination conditions to 

produce a-bromo enone 61b via the dibromide intermediate (Scheme 37). The 

propensity for the ^-elimination of a,|3-dibromo ketones should produce the desired 
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compound 62b. Addition of another equivalent of bromine should produce the 

tribromide 63b. An elimination of an a-bromide should produce an a.fS-dibromo enone, 

which upon treatment under hydrolytic conditions should yield a (i-diketone 65b. 

Compound 65b could presumably then be allylated to produce the desired bicyclic 

compound 66b. 

Unfortunately, the bromination reaction of compound 61b did not produce the 

expected a-bromo enone or the dibromide intermediate. Instead, it produced a mixture of 

uncharacterizable products. 

o, 
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Scheme 37 

With these disappointing results, the strategy to construct the (3-bromo enone 

shifted towards a different pathway. The allylic bromination (Scheme 38) of the bicyclic 
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olefin 59a with NBS produced a single regioisomeric ally! bromide 67. Proton NMR 

spectroscopic assignment of the bridgehead hydrogen ruled out isomer 70. 

Br-. 

"COgEt 
1.1 eq. NBS 

O 
"COgEt 

59a 67 

0 

70 

.Br 

"COzEt 
O 

68 

"COgEt 
O 

69 

"C02Et 

Scheme 38 

The bridgehead proton of regioisomer 70 should have a similar splitting pattern 

and a slight change in chemical shift compared to the analogous proton in olefin 59a. 

The "H NMR spectrum of 67 shows the peak corresponding to the bridgehead proton 

with a drastically different splitting pattern and significant change in chemical shift. The 

addition of the bromide radical would occur at the less hindered site of the molecule. To 

produce compound 70, the bromine radical would have to add to the allylic radical at the 

more congested site. The allylic bromide 67 was then subjected to various allylic 

oxidation conditions to produce the (3-bromo enone. Unfortunately, the allylic oxidation 

of compound 67 was not successful (Scheme 39). 
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Scheme 39 

The inability to oxidize bromide 67 redirected attempts to synthesize carbonyl 

equivalents. Allylic halides can be converted to carbonyls via the Kornblum45 oxidation 

with dimethyl sulfoxide and other known reagents. This transformation with enone 67 

would require a dibromide intermediate 71 in order to generate the desired bromo enone. 

Bromide 67 was treated with 1.1 equivalents of bromine and 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) to produce 71. 

72 

Scheme 40 



www.manaraa.com

50 

The structure of the product from this reaction was assigned by 'H NMR 

spectroscopy. The vinylic proton at C-4 and the proton at C-3 in 71 are doublets with 

coupling constants of 3.0 Hz. The splitting patterns and coupling constants indicate that 

they are coupled to only one proton. Regioisomer 72 should couple with two protons and 

have a different splitting pattern. 

Compound 71 was prepared in two steps from the bicyclic olefin. Since both 

steps were brominating steps, an attempt was made to generate the dibromide in one step. 

The bicyclic olefin 59a was treated with 2 equivalents of NBS and catalytic amounts of 

AIBN (Scheme 41). The product formed was the expected dibromide 71 in an 82% 

yield. 

Scheme 41 

The specificity of the regiochemistry is rationalized as follows. The first 

bromination occurs as before on the least hindered side of the molecule. The second 

bromination occurs on the carbon not bearing the bromine atom, due to the stability of the 

allylic radical intermediate. 

With compound 71 in hand, various attempts to oxidize this compound were 

made. The Kornblum oxidation conditions with DM SO did not affect the starting 
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material, even at elevated temperatures. Treating dibromide 71 with pyridine-N-oxide, 

alumina (AI2O3) and formic acid with triethylamine also did not produce the desired 

product. The next attempt used a variation of the Kornblum oxidation. Trimethylamine-

N-oxide46 in DMSO was used to transform the dibromide intermediate (Scheme 42). 

Surprisingly, enone 7 was formed. 

COoEt 
Me-XO" 

DMSO 

o 

0 
"C02Et 

0 

7 

"COgEt 

Scheme 42 

The formation of enone 7 indicated the inclination of the dibromide intermediate 

to undergo nucleophilic displacement. The nucleophilic addition of an oxygen atom from 

either DMSO or trimethylamine-N-oxide apparently displaced the allylic bromide 

creating an allylic bromohydrin which readily converted to the enone. With this insight, 

a strategy to produce the p-bromo enone could be based on a tribromide intermediate 

(Scheme 43) where the allylic position contains two bromine atoms, one for the 

elimination and the other might become the P-bromide of the enone. 
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To prepare the tribromide intermediate 73, dibromide 71 was treated with one 

equivalent of NBS. Tribromide 74 was formed (Scheme 43), but surprisingly, the desired 

P-bromo enone 75 was also produced in a one to one ratio with compound 74. 

Tribromide 74 was converted to compound 75 by heating in aqueous acetic acid to result 

in an overall yield of 95% of P-bromo enone 75 from the dibromide 71. 

aq. AcOH 

Scheme 43 

The structure assignment of compound 75 was based on the !H NMR spectrum 

and mechanistic considerations. The chemical shift of the bridgehead proton of 75 was 

similar to that of the same proton from the bicyclic enone 7 (3.51 and 3.45 ppm 
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respectively). If the proton in question were next to the vinylic bromide isomer, the 

chemical shift should be considerably different. Mechanistically, the nucleophilic 

substitution should be from the less hindered side, opposite the ethyl ester. The resulting 

product formed (75) should have the carbonyl adjacent to the tertiary bridgehead carbon 

instead of adjacent to the quaternary bridgehead carbon. This was supported by the 

previous generation of enone 7 and its structure (Figure 11). The lack of regioisomer 7a 

implies the strong preference of nucleophilic addition from the less sterically congested 

side. 

C02Et 

O 

7 

"C02Et 

O 

7a 

x;o2Et 

Figure 11. Hydrolysis of the dibromide intermediate 

The in situ conversion of compound 74 to 75 indicates the rapid rate of hydrolysis 

of the tribromide intermediate. The addition can occur by possibly two routes (Figure 

12). In the first possible pathway, the ionization of compound 74 leads to an allylic 

carbocation intermediate. Since the nucleophilic addition likely occurs on the less 
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hindered side, the resulting bromohydrin would produce compound 75. An alternate 

mechanism would involve a tribromide isomer 76. Sn2' displacement of an allylic 

bromide would generate the bromohydrin, which would then lead to a desired P-bromo 

enone 75. 

Br 

O 

74 

Mech. I 
"CO,Et CO,Et X02Et 

O 
COgEt 

H,0 

/O Br 
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^Y^vC02Et 
O 

76 

Figure 12. Mechanisms of Hydrolysis 

However, the probability of the isomer 76 being the tribromide compound is 

unlikely (Figure 13). The formation of the tribromide 76 involves the allylic radicals 77 

and 78. Since both radicals seem to have similar electronic and inductive effects, the 

addition should be more dependent on steric effects. The conclusion can be made that the 

tribromide compound would be that of isomer 74 rather than 76. 
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Figure 13. Bromination of the dibromide intermediate 

Interestingly, olefin 59a can be converted directly (Scheme 44) to tribromide 74 

and P-bromo enone 75 when treated with three equivalents of NBS. However, the total 

yields of compound 75 are low (-50%) compared to the two-step sequence. 
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Scheme 44 

With the attainment of compound 75, the next goal was to displace the bromide 

ion with an oxygen nucleophile. The addition of sodium allyloxide (Scheme 45) 

produced the ally! enol ether 79. I leating in a sealed tube at 140 °C facilitated the 

Claisen rearrangement to produce the desire bicyclic P-diketone subunit 80 in 45% 

isolated yield. The crude yield of the P-diketone compound before purification was over 
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80%; however, after column chromatography, the isolated yield was much lower. The 

retention time on the column was indicative of the polarity of the molecule. 

80 

Scheme 45 

With the successful synthesis of the bicyclic P-diketone 80, the strategy was 

applied to a more complex system. Although the bromination-hydrolysis methodology 

could be extendable to more substituted systems, a previous observation (Figure 14) was 

a cause for concern. The addition of thiophenoxide onto bicyclic enone 7 occurred 

smoothly with high yields. However, with the presence of a geminal dimethyl group 

(7a), the addition did not occur. 
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Figure 14. Steric hinderance of conjugate addition 

The presence of the additional groups increased the steric hinderance, preventing 

the addition. In order to generalize the synthetic strategy, the synthesis of the bicyclic |3~ 

diketone core containing a geminal dimethyl group was investigated. 

Hyperforin Bicyclic Core 
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The synthesis began with the construction of the substituted cyclohexanone. The 

condensation of 6-methyl-5-hepten-2-one and dimethyl carbonate produced keto ester 81 

in 85% yield (Scheme 46). The Lewis acid catalyzed cyclization47 of keto ester 81 

formed the keto ester 82. Treatment of 82 with sodium hydride and ally! bromide yielded 

the O-allylated product 83, which was isolated and purified. Heating at 140 °C in a 

sealed tube afforded the rearranged compound 84. The manganic triacetate oxidative 

cyclization was then performed to yield the bicyclic olefin 85. 

0 O O 

O 
+ A 

MeO OMe 

81 82 

NaH, 

Mn(OAc)3 

C02Me 
CU(OAC)2 

85 84 83 

Scheme 46 

The two-step bromination procedure in the previous work garnered higher yields 

of the bicyclic p-bromo enone versus the one-step procedure. Treatment of olefin 85 
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with 2 equivalents of NBS (Scheme 47) produced the expected dibromide 86 in a 60% 

yield. 

H' 

O 

85 

2 eq. NBS 
C02Me H 

O 

86 

Scheme 47 

When dibromide 86 was treated with one equivalent of NBS, enone 87 formed 

unexpectedly (Scheme 48). The rate of hydrolysis was in competition with the rate of 

bromination. 

Brv 

H' 

O 

,Br 

"C02Me 
1 eq. NBS 

H' 

A 

"C02Me 

V 
86 87 

Scheme 48 

In the previous synthesis without the geminal dimethyl group, the rate of 

bromination of the dibromide compound was faster than the hydrolysis. With compound 

86, the rate of hydrolysis was faster; therefore, enone 87 was produced exclusively. 
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Because of these unanticipated results, the next attempt at producing the P-bromo 

enone was the one step brominating procedure (Scheme 48). The reaction was carried 

out in dry NBS, AIBN, carbon tetrachloride, and crushed molecular sieves, which were 

used to prevent the hydrolysis. The hydrolysis did occur, but not on the dibromide. It 

occurred on the tribromide to produce the desired bicyclic P-bromo enone 88 in a 55% 

yield from the bicyclic olefin. There was no presence of the tribromide compound in the 

products obtained. Enone 87 was also isolated from the reaction mixture in less than 

10% yield. 

O 

85 

"C02Me 
3 eq. NBS 

Ck 

h '  

.Br 

"C02Me 

V 
88 

Scheme 48 

With the construction of compound 88, the model system was close to 

completion. The addition of sodium allyloxide (Scheme 49) onto the P-bromo enone 

produced the allyl enol ether 89. Subsequent heating produced the bicyclic P-diketone 

subunit 90. 
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In summary, a concise synthesis of the functionalized bicyclic core subunit of 

acyl phloroglucin natural products was achieved in eight steps. In the course of this 

synthesis, the bromination-hydrolysis methodology was investigated to transform 

bicyclic olefins into bicyclic P-diketones. The generality of this transformation strategy 

was demonstrated on two related bicyclic systems. The strategic route explored and 

developed can be applied towards the total synthesis of this class of natural products. 
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Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers and 

used without purification. Tetrahydrofuran and diethyl ether were distilled from sodium 

benzophenone ketyl. Dichloromethane, benzene and diisopropylamide were distilled 

over calcium hydride. All experiments were performed under argon atmosphere unless 

otherwise noted. Organic extracts were dried over anhydrous magnesium sulfate. 

Infrared spectra were obtained on a Perkin-Elmer model 1320 spectrophotometer. 

Nuclear magnetic resonance experiments were performed with either a Varian 300 MHz 

or Broker 400 MHz instrument. All chemical shifts are reported relative to CDC h (7.26 

ppm for 'il and 77.06 ppm for !3C), unless otherwise noted. Coupling constants (J) are 

reported in Hz with abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, 

m=multiplet. High resolution mass spectra were recorded on a Kratos model MS-50 

spectrometer and low resolution mass spectra were performed with a Finnegan 4023 mass 

spectrometer. Standard grade silica gel (60 Â, 32-63 |im) was used for flash column 

chromatography. 
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2-Oxo-l-(3-oxo-propvl)-cyclohexanccarboxvlic acid ethyl ester (4) 

Sodium metal (0.068g. 3 mmol), freshly cut and washed with hexanes, was added 

to 200 mL of absolute ethanol and the solution was cooled to -78 °C. A mixture of ethyl 

2-cyclohexanone carboxylate (10g, 58 mmol) and acrolein (4.0g, 71 mmol) in 30 mL of 

ethanol was added dropwise slowly. The solution was stirred at -78 °C for 30 minutes 

and then at room temperature for an additional 30 minutes. The mixture was neutralized 

with glacial acetic acid and the solvent was removed by vacuum. The residue was 

dissolved in ether and washed with water, saturated aqueous NaHCOs, dried, and 

concentrated in vacuo. Crude compound was used further without purification. 'H NMR 

(300 MHz, CDCls) 8 9.73 (s, 1H), 4.19 (q, 9 Hz, 2H), 2.55-1.39 (m, 12H), 1.28 (t, 

6 Hz, 3H); HRMS (EI) m/z calcd for 226.1205, found 226.1209. 

4,9-Dioxo-bicvclo [3.3.1 "|nonane-1 -carboxvlic acid ethyl ester (6) 

Sodium metal (2.0g, 88.4 mmol), freshly cut and washed with hexanes, was added 

to 350 mL of absolute ethanol and the solution was cooled to -78 °C. Aldehyde 4 (10g, 

44.2 mmol), dissolved in 20 mL of ethanol, was added dropwise. The solution was kept 

in the refrigerator for 24 hours. The solution was quenched with 10% HC1 followed by 

removal of the solvents. The residue was diluted with ether and washed with brine, dried, 

and concentrated. The crude alcohol 5 was then dissolved in 100 mL of CH2CI1 and 

added to a mixture of PCC (12.4g, 58 mmol) and Celite (12.4g) in 200 mL of CH2C12 at 

room temperature. After 4 hours, the solvent was removed and the brown residue was 

dissolved in ether, filtered through Celite, dried, and purified by column chromatography. 

'H NMR (300 MHz, CDCI3) S 4.28 (q, J = 6 Hz, 2H), 3.16 (t, J = 3 Hz, 1H), 2.89-2.81 
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(m, 1H), 2.74-2.68 (m, 1H), 2.60-2.4 (m, 3H), 2.06-2.17 (m, 2H), 1.95-1.88 (m, 1H), 

1.79-1.61 (m, 2H), 1.32 (t, 3 Hz, 3H); NMR (300 MHz, CDCl,) 8 209.28, 207.11, 

172.50, 62.83, 62.01, 57.94, 39.99, 38.47, 35.03, 25.37, 19.04, 14.41; HRMS (El) m/z 

calcd for 224.1049, found 224.1053. 

4.9-Dioxo-bicyclo[3.3. llnon-2-ene-1 -carboxvlic acid ethyl ester (7) 

To ketone 6 (2.0g, 9 mmol) in 90 mL of acetonitrile was added Et3N (1.13g, 11.2 

mmol), TMSC1 (1.21g, 11.2 mmol), and Nal (1.68g, 11.2 mmol) at room temperature. 

After stirring overnight, the solvent was removed by vacuum and dissolved in dry 

pentane. The solution was filtered and concentrated in vacuo. (Crude enol silyl ether)1 IT 

NMR (300 MHz, CDCI3) S 5.07 (t, J = 3 Hz, 1H), 4.23 (q, J= 6 Hz, 2H), 3.21 (d, J = 12 

Hz, 1H), 2.80 (s, 1H), 2.39-1.64 (m, 7H), 1.29 (t, 6 Hz, 3H), 0.19 (s, 9H). The crude 

enol silyl ether in 50 mL of DMSO was added to a solution of 20 mL of DMSO and 

Pd(OAc)2 (0.20g, 0.9 mmol) at room temperature. Oxygen was bubbled through the 

mixture for 30 minutes and the solution was heated at 80 °C for 16 hours. After cooling 

to room temperature, the mixture was added saturated ammonium chloride solution and 

filtered through Celite. The organic layer was extracted with ether, dried, concentrated 

and purified by column chromatography to afford 7 in a 65% yield. 1M NMR (300 MHz, 

CDCI3) 8 7.17 (d, J = 9 Hz, 1H), 6.57 (d, J = 9 Hz, 1H), 4.29 (q, J = 6 Hz, 2H), 3.38 (t, J 

= 3 Hz, 1H), 2.52 (dt, J = 12, 6 Hz, 1H), 2.23-2.18 (m, 1H), 2.09-1.95 (m, 2H), 1.79-1.54 

(m, 2H), 1.30 (t, J = 6 Hz, 3H); HRMS (EI) m/z calcd for 222.0892, found 222.0895. 
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5,10-Dioxo-3-oxa-tricyclof4.3.1.02.41decane-l-carboxylic acid ethyl ester (8) 

To enone 7 (0.50g, 2.25 mmol), dissolved in 30 mL of methanol at 0 °C, was 

added 30% II2O2 (76.6 g, 6.75 mmol) and a catalytic amount of aqueous 20% NaOH 

(0.00 lg, 0.017 mmol). After 15 minutes, the solution was added ice water and extracted 

with dichloromethane, dried, concentrated and purified by column chromatography. 'H 

N M R  ( 3 0 0  M H z ,  C D C I 3 )  8  4 . 3 6  ( q ,  J = 6  H z ,  2 H ) ,  3 . 7 6  ( d , J = 3  H z ,  1 H ) ,  3 . 6 7  ( d ,  J = 3  

Hz, 1H), 3.15 (t, 7=3 Hz, 1H), 2.61-2.51 (m, 1H) 2.41-2.29 (m, 2H), 2.10-1.99 (m, 1H), 

1.81-1.69 (m, 2H), 1.36(t,J=6Hz, 3H). 

2-Hvdroxv-4.9-dioxo-bicvclor3.3.11nonane-l-carboxvlic acid ethyl ester (9) 

To epoxy ketone 8 (70mg, 0.29 mmol), dissolved in 10 mL of (2:1) THF: FLO. 

Aluminum amalgam, made from aluminum foil (0.125g, 4.6 mmol) and 1% HgCl (l.lg, 

4.6 mmol) solution in water was added. The mixture was stirred at room temperature for 

1 hour and filtered through cotton and washed with THF. The solution was concentrated 

and purified by column chromatography. 111 NMR (300 MHz, CDC13) 8 4.25 (q. J = 6 

Hz, 2H), 3.77 (s, 1H), 3.09 (d, J=9 Hz, 1H), 2.84 (dd, J = 21, 9 Hz, 1H), 2.62 (dd,J = 

18,3 Hz, 1H), 2.16-1.41 (m, 6H), 1.21 (t,J=6Hz, 3H). 

4.4-dimethvl-1,3-cyclohexadione (10) 

To 4,4-dimethyl-2-cyclohexenone (lg, 8.0 mmol) in 100 mL of dry toluene at 0 

°C was added 1.0 M Et2AlCN (12.0 mL, 12.0 mmol). After 30 minutes, EtaN (3.26g, 

32.0 mmol) and TMSC1 (1.75g, 16.0 mmol) were added and the mixture was stirred for 1 

hour at room temperature and then added saturated aqueous NaHCOa slowly. The 
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organic layer was extracted with ether, dried and concentrated. Cyano enol silyl ether: 1 i I 

NMR (300 MHz, CDCb) 8 4.74-4.73 (m, 1H), 3.06-3.04 (m, 1H), 2.12-1.41 (m, 4H), 

1.15 (s, 3H), 1.09 (s, 3H), 0.20 (s, 9H). The crude enol silyl ether (0.5g, 2.6 mmol) was 

dissolved in 5 mL of THF and added to LDA, made from /-Pr2NH (0.31, 3.12 mmol) and 

2.5 M n-BuLi (1.23g, 3.12 mmol) in 20 mL of THF, at -78 °C. Oxygen was bubbled 

through the solution for 30 minutes and the mixture was warmed to 0 °C followed by the 

addition of 1 M SnC'L (1.15g, 5.12 mmol) in 2 M HC1. After 10 minutes at room 

temperature, the solution was diluted with water, extracted with ether, dried, concentrated 

and purified by column chromatography to afford compound 10 in a 64% yield. The 

product was spectrally identical to the commercial material. 

4.9-Dioxo-2-phcnvlsulfanvl-bicvclof3.3.1 Tnonane-1 -carboxvlic acid ethyl ester (11) 

To enone 7 (2.0g, 9 mmol) in 100 ml, of CH2G2 was added Et3N (0.9lg, 0.9 

mmol) at 0 °C. followed by thiophenol (1.19g, 10.8 mmol) dropwise. The mixture was 

stirred at 0 °C for 3 hours and quenched with saturated aqueous ammonium chloride, 

extracted with ethyl acetate, washed with brine, dried, concentrated and purified by 

column chromatography. 'H NMR (300 MHz, CDCI3) 5 7.48-7.22 (m, 5H), 4.20 (m, 

2H), 3.36 (m, 1H), 3.21-1.51 (m, 9H), 1.26 (t, 6 Hz, 3H); HRMS (EI) m/z calcd for 

332.1082, found 332.1084. 
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4.9-Dioxo-2-phenvlsulfanyl-bicvclor3.3.1 lnon-2-ene-1 -carboxvlic acid ethyl ester (12) 

To enone 11 (l.Og, 3 mmol) in 30 mL of CC'U at 0 °C, was slowly added NCS 

(0.4% 3.6 mmol). The mixture was kept at 0 °C for 5 hours and then filtered, 

concentrated and purified by column chromatography, 'li NMR (300 MHz, CDCI3) 5 

7.54-7.41 (m, 5H), 5.95 (s, 1H), 4.42-4.30 (m, 2H), 3.57 (t, J = 3 Hz, 1H), 2.61-1.61 (m, 

6H), 1.41-130 (m, 3H); NMR (300 MHz, CDCI3) 6 192.47, 187.05, 168.52, 135.99, 

131.07, 130.62, 126.47, 68.34, 65.73, 62.53, 61.70, 34.52, 33.16, 25.75, 18.09, 14.24; 

HRMS (EI) m/z calcd for 330.0926, found 330.0931. 

2-Methoxv-4.9-dioxo-bicyclof3.3.1 lnon-2-ene-1 -carboxvlic acid ethyl ester (13) 

To a fresh solution of sodium metal (0.24g, 10.5 mmol) in 15 mL of methanol at 

25°C, was added compound 12 (0.5g, 1.5 mmol) in 5 mL of methanol. The solution was 

boiled for 2 hours and then cooled to 0 °C. The mixture was quenched with saturated 

aqueous ammonium chloride, concentrated, diluted with water and extracted with ethyl 

acetate. The organic layers were dried, concentrated in vacuo and purified by column 

chromatography. 'H NMR (300 MHz, CDCI3) 5 5.46 (s, 1H), 3.79 (s, 3H), 3.72 (s, 3h), 

3.53 (t, J = 3 Hz, 1H), 2.43 (dt,J= 12, 3 Hz, 1H), 2.29-2.25 (m, 1H), 2.11-2.08 (m, 1H), 

1.97-1.92 (m, 1H), 1.75-1.69 (m, 2H). 

2-Hvdroxy-4.9-dioxo-bicvclol 3.3 .llnon-2-ene-l-carboxvlic acid ethyl ester (14) 

To methyl enol ether 13 (0.057g, 0.24 mmol) in 3 mL of acetonitrile at 0 °C, was 

added TMS1 (0.15g, 0.72 mmol) dropwise and the reaction mixture was warmed to room 

temperature. After 3 hours, the mixture was added 25% aqueous sodium thiosulfate and 
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extracted with CH2CI2, dried, concentrated and purified by preparative TLC. 1H NMR 

(300 MHz, CDCb) 8 5.64 (s, 1H), 3.71 (s, 3H), 3.58 (t,/= 6 Hz, 1H), 2.61-2.48 (dt,J = 

15, 3 Hz, 1H), 2.41-2.30 (m, 1H), 2.20-2.10 (m, 1H), 2.05-1.92 (m, 1H), 1.81-1.69 (m, 

2H); NMR (300 MHz, CDCI3) 8 172.28, 166.94, 161.46, 156.09, 112.77, 91.15, 

52.93, 43.85, 29.92, 26.50, 19.19; FOR (thin film) 3447, 1734, 1674, 1567, 1265 cm '; 

HRMS (EI) m/z calcd for 224.0685, found 224.0691. 

2-Methyl-2-(4-methyl-pent-3-envl)-6-oxo-cvclohexanecarboxvlic acid ethyl ester (15) 

To 1.4 M MeLi (38.5 mL, 54 mmol) and Cul (5.14g, 65 mmol) in 200 mL of 

ether at -78 °C, was added compound 14 (4g, 22.5 mmol) in 10 mL of ether. After 1 

hour, methyl cyanoformate (3.06g, 104 mmol) in 5 mL of ether was added. The solution 

was stirred for 4 hours at -78 °C, and added saturated aqueous ammonium chloride, 

extracted with ether, dried, concentrated, and purified by column chromatography. *H 

NMR (300 MHz, CDCI3) 8 5.04 (m, 1H), 3.71 (s, 3H), 3.28 (s, 1H), 2.75-2.62 (m, 1H), 

2.33-1.30 (m, 9H), 1.68 (s, 3H), 1.59 (s, 3H), 1.08 (s, 3H). 

6-Allyl- L5-bis-ftert-butvl-dimethvl-silanvloxv)-6-methyl-cyclohexa-1,4-diene (24) 

To dilcetone 23 (0.5g, 3.0 mmol) in 30 mL of CH2CI2 was added Et3N (0.915g, 9 

mmol) then TBSTf (2.4g, 9 mmol) at room temperature. After the reaction was 

completed, water was added to the mixture and was then extracted with CH2CI2, dried, 

and purified by column chromatography. 'H NMR (300 MHz, CDCI3) 8 5.71-5.59 (m, 

1H), 4.99-4.87 (m, 2H), 4.71 (t, J = 3 Hz, 2H), 2.64 (t, J = 3 Hz, 2H), 2.30 (d, J = 6 Hz, 

2H), 1.21 (s, 3H), 0.94 (s, 9H), 0.16 (s, 6H). 
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l~(3-Chloro-propyl)-2,6-dimethoxv-cvclohexa-2,5-dienecarboxylic acid methyl ester (29) 

Liquid ammonia (100 mL) was collected in a three-neck flask at -78 °C 

containing methyl-2,6-dimethoxybenzoate (lg, 5.1 mmol) and f-BuOH (0.38g, 5.1 

mmol). Freshly cut sodium metal (0.3g, 12.75 mmol) was added. When the dark blue 

color remained for more than 5 minutes, 1 -chloro-3-iodopropane (1.12g, 5.5 mmol) was 

added and the solution turned a faint yellow. The mixture was warmed to room 

temperature and saturated aqueous ammonium chloride was added slowly. The ammonia 

was allowed to evaporate overnight. The residue was diluted with brine and extracted 

with ether, dried and purified by column chromatography. 'H NMR (300 MHz, CDClj) 5 

4.86 (t, 3 Hz, 2H), 3.67 (s, 3H), 3.50 (s, 6H), 3.46 (t, J= 6 Hz, 2 H), 2.86 (qt, 15, 

3 Hz, 2 H), 2.10-2.05 (m, 2 H), 1.55-1.48 (m, 2H); NMR (300 MHz, CDCI3) 8 

173.08, 152.09, 93.68, 54.90, 54.64, 52.82,45.31, 28.89, 28.07, 24.19. 

l-(3-Chloro-propvl)-2.6-dimethoxv-4-oxo-cvclohexa-2.5-dieiiecarboxvlic acid methyl 

ester (30) 

To diene 29 (0.6g, 1.66 mmol) in 20 mL of CH2CI2 was added Celite (2.54g), 

PDC (2.54g, 6.64 mmol) and then 78% f-BuOOH (0.77g, 6.64 mmol) at room 

temperature. After 4 hours the mixture was filtered through Celite, concentrated in vacuo 

and purified by column chromatography. *H NMR (300 MHz, CDCI3) 8 5.59 (s, 2H), 

3.71 (s, 3H), 3.68 (s, 6H), 3.48-3.44 (t, J = 6 Hz, 2H), 2.37-2.32 (m, 2H), 1.52-1.47 (m, 

2H). 
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2,6-Bis-allyloxy-benzoic acid methyl ester (36) 

Methyl 2,6-dihydroxybenzoate (0.3g, 1.8 mmol) in 20 mL of acetone at room 

temperature was added KiCOi (0.74g, 5.4 mmol) followed by allyl bromide (0.65g, 5.4 

mmol). The mixture was stirred overnight and filtered. The solvent was concentrated 

and the residue was dissolved in ether. The organic layer was washed twice with 

saturated aqueous NaHC03, brine, dried, concentrated and purified by column 

chromatography. *H NMR (300 MHz, CDCI3) S 7.21 (t, .7=6 Hz, 1II), 6.52 (d, J = 6 

Hz, 2H), 6.01-5.92 (m, 2H), 5.39 (d, 12 Hz, 2H), 5.24 (d,J= 12 Hz, 2H), 4.54 (d, J = 

6 Hz, 4H), 3.89 (s, 3H). 

2.6-Bis-methoxv-benzoic acid methyl ester (38) 

Methyl 2,6-dihydroxybenzoate (2g, 11.9 mmol) in 10 mL of THF was added 

slowly to a solution of NaH (0.14g, 47.8 mmol) in 100 mL of THF at room temperature. 

After the mixture was stirred for 1 hour, MOMC1 (1.4g, 35.7 mmol) was added dropwise. 

The mixture was stirred overnight and quenched with saturated aqueous ammonium 

chloride slowly. The organic layer was extracted with ether, washed with brine, dried, 

concentrated and purified by column chromatography. 1II NMR (300 MHz, CDCI3) § 

7.25 (t, J = 6 Hz, 1H), 6.81 (d, 6 Hz, 2H), 5.17 (s, 4H), 3.92 (s, 3H), 3.47 (s, 6H). 

l-(3-ChloropropvI)-2.6-bis-methoxvmethoxv-cvclohexa-2.5-dienecarboxvIic acid methyl 

ester (39) 

Liquid ammonia (100 mL) was collected in a three-neck flask at -78 °C 

containing compound 38 (2g, 7.8 mmol) and /-BuOH (0.58g, 7.8 mmol). Freshly cut 
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sodium metal (0.45g, 19.5 mmol) was added. When the dark blue color remained for 

more than 5 minutes, l-chloro-3-iodopropane (1.6g, 7.8 mmol) was added and the 

solution turned faint yellow. The mixture was warmed to room temperature and saturated 

aqueous ammonium chloride was added slowly. The ammonia was allowed to evaporate 

overnight. The residue was diluted with brine and extracted with ether, dried and purified 

by column chromatography. 1 IL NMR (300 MHz, CDC13) 5 5.20 (t, J = 6 Hz, 2H), 4.95 

(dd, 15, 9 Hz, 4H), 3.70 (s, 3H), 3.53 (t, J=6 Hz, 2H), 3.37 (s, 6H), 2.99-2.78 (m, 

2H), 2.20-2.15 (m, 2H), 1.68-1.61 (m, 2H). 

1 -(3-Chloro-propvD-2.6-bis-methoxymethoxv-4-oxo-cvclohexa-2.5-dienecarboxvlic acid 

methyl ester (40) 

To diene 39 (lg, 3.0 mmol) in 30 mL of CH2CI2 was added Celite (4.5g), PDC 

(4.5g, 12 mmol) and then 78% z-BuOOH (1.38g, 12 mmol) at room temperature. After 4 

hours the mixture was filtered through Celite, concentrated in vacuo and purified by 

column chromatography packed with Florisil. 'H NMR (300 MHz, CDCI3) 5 5.79 (s, 

2H), 5.08 (q, J=2Hz, 4H), 3.73 (s, 3H), 3.51 (t, J = 2Hz, 2 H), 3.41 (s, 6H), 2.45-2.40 

(m, 211), 1.55-1.53 (m, 2H). 

l-(3-Chloro-nroDvl)-2,6-dihvdroxv-4-oxo-cvclohexa-2.5-dienecarboxvlic acid methyl 

ester (41) 

To dienone 40 (60 mg, 0.17 mmol) in 2 mL of THF was added 1 mL of 6M HC1 

at room temperature. After 1 hour, the solution was neutralized, diluted with water and 

extracted with ethyl acetate, dried and concentrated. The crude product showed, by *H 
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NMR, an absence of the MOM groups; however, the compound could not be purified. 1H 

NMR (300 MHz, CDCI3) 8 5.61 (s, 1H), 3.71 (s, 1H), 3.51-3.44 (m, 2H), 2.39-2.33 (m, 

2H), 1.54-1.42 (m,2H). 

1-(3-Iodo-propvl)-2,6-bis-methoxvmethoxy-4-oxo-cvclohexa-2,5-dienecarboxvlic acid 

methyl ester (42) 

To dienone 40 (0.06g. 0.17 mmol) in 2 mL of acetone was added Nal (0.052g, 

0.34 mmol) at room temperature. After 30 minutes, the solution was filtered and 

concentrated, and purified by column chromatography. 'H NMR (300 MHz, CDCI3) 8 

5.58 (s, 2H), 3.71 (s, 6H), 3.70 (s, 3H), 3.10 (t, J = 6 Hz, 2H), 2.34-2.28 (m, 2H), 1.57-

1.48 (m, 2H). 

2-Qxo-cvclohe.\ane-l. 1 -dicarboxylic acid diethyl ester (44) 

To ethyl 2-cyclohexanone carboxylate (2.0g, 11.75 mmol) in 10 mL of THF is 

added dropwise to a suspension of Nai l (0.34g, 14.1 mmol) in 100 mL of THF, followed 

by Mg(ClCW (3.15g, 14.1 mmol). The mixture became very dense and was diluted with 

THF. After 20 minutes, ClCCbEt (1.4g, 13 mmol) is added slowly. The solution was 

boiled for 15 minutes and then cooled to room temperature. Aqueous sulfuric acid (1%) 

was added to the solution, followed by ether extraction. The organic layer was dried, 

concentrated and purified by distillation. 111 NMR (300 MHz, CDCI3) 8 4.27 (q, J = 6 

Hz, 4H), 2.58 (t, 6 Hz, 1H) 2.26-2.21 (m, 1H), 1.89-1.84 (m, 4H), 1.70-1.64 (m, 2H), 

1.27 (t, J= 6 Hz, 611). 
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3-Mcthyl-2-oxo-cyclohexanc-1.1 -dicarboxylic acid diethyl ester (45) 

To ketone 44 (lg, 4.13 mmol) dissolved in 20 mL of DMF at -30 °C, was added 

1.0M LiHMDS (5.4mL, 5.4 mmol). The solution was stirred at -30 °C for 1 hour, after 

which, was added Mel (0.88g, 6.2 mmol) in 2 mL of DMF. After 2 hours at -30 °C, 

saturated aqueous ammonium chloride was added and the solution was warmed to room 

temperature. The mixture was diluted with water and extracted with ethyl acetate, 

washed with brine, dried, concentrated and purified by column chromatography. !H 

NMR (300 MHz, CDCI3) 5 4.33-4.11 (m, 4H), 2.80-2.71 (m, 1H), 2.67-2.60 (m, 1H), 

2.26 (dt, J = 15, 3 Hz, 1H), 2.09-2.02 (m, 1H), 1.86-1.80 (m, 1H), 1.65-1.35 (m, 2H), 

1.31-1.22 (m, 6H), 1.10-1.05 (d, J = 15 Hz, 3H). 

3-Acetyl-3-methyl-2-oxo-cvclohexane-1.1 -dicarboxylic acid diethyl ester (46) 

To ketone 45 (0.5g, 1.95 mmol) in 20 mL of THF was added 1.0 M LiHMDS 

(2.53 mL, 2.54 mmol) at -78 °C. After 1 hour at -78 °C, acetyl cyanide (0.18g, 2.54 

mmol) in 1 mL of THF was added. After two hours, saturated aqueous ammonium 

chloride was added and the solution was warmed to room temperature. The mixture was 

diluted with water and extracted with ethyl acetate, washed with brine, dried, 

concentrated and purified by column chromatography. ' H NMR (300 MHz, CDC13) 8 

4.30-4.11 (m, 4H), 2.56-2.46 (m, 2H), 2.39-2.28 (m, 1H), 2.19 (s, 3H), 1.82-1.69 (m, 

2H), 1.48-1.39 (m, 1H), 1.36 (s, 3H), 1.31-1.21 (m, 6H); NMR (300 MHz, CDCI3) 8 

204.00, 202.07, 167.90, 167.78, 69.86, 64.37, 62.58, 62.52, 34.70, 32.42, 25.70, 23.73, 

18.85,14.18, 14.05; HRMS (EI) m/zcalcd for 298.1416, found 298.1420. 
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3-Acetvl-2-oxo-cyclohexane-1.1 -dicarboxylic acid diethyl ester (47) 

To ketone 44 (0.5, 2 mmol) in 20 mL of THF was added 1.0 M LiHMDS (2.7mL, 

2.6 mmol) at -78 °C. After 1 hour at -78 °C, acetyl cyanide (0.19g, 2.6 mmol) in 1 mL of 

THF was added. After two hours, saturated aqueous ammonium chloride was added and 

the solution was warmed to room temperature. The mixture was diluted with water and 

extracted with ethyl acetate, washed with brine, dried, concentrated and purified by 

column chromatography. 'H NMR (300 MHz, CDCI3) 5 4.24 (q, J- 6 Hz, 4H), 3.82 (t, J 

= 3 Hz, 2H) 2.37 (t, J = 3 Hz, 2H), 2.33-2.30 (m, 2H), 2.14 (s, 3H), 1.68-1.52 (m, 2H), 

1.27 (t, J=6Hz, 3H). 

3-Acetvl-3-allvl-2-oxo-cvclohexane-1.1 -dicarboxylic acid diethyl ester (48) 

To Nai l (0.054g, 2.3 mmol) in 10 mL of DMF at 0 °C, was added dione 47 (0.5g, 

1.76 mmol) in 1 mL of THF. After 15 minutes, allyl bromide (0.24g, 1.9 mmol) in 1 mL 

of THF was added slowly, and the solution was stirred overnight at room temperature. 

The mixture was added saturated aqueous ammonium chloride, and the solution was 

wanned to room temperature. The mixture was diluted with water and extracted with 

ethyl acetate, washed with brine, dried, concentrated and purified by column 

chromatography. 'H NMR (300 MHz, CDCI3) 8 5.51-5.39 (m, 1H), 5.11-5.06 (m, 2H), 

4.31-4.09 (m, 4H), 2.85-2.78 (m, 1H), 2.54-2.45 (m, 3H), 2.31-2.21 (m, 1H), 2.19 (s, 

3H), 1.79-1.69 (m, 2 H), 1.51-1.38 (m, 1H), 1.32-1.20 (m, 6H); "C NMR (300 MHz, 

CDCI3) 8 202.61, 201.12, 167.89, 167.76, 131.99, 119.73, 70.05, 67.72, 62.61, 62.51, 

41.13, 31.91, 31.07, 25.82, 18.65, 14.18, 14.04; HRMS (EI) m/z calcd for 324.1573, 

found 324.1579. 
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2-Allvl-2-benzoyl-cyclohcxanone (58b) 

To 2-benzoyl cyclohexanone (10g, 50 mmol) and allyl bromide (12.8g, 75 mmol) 

in 400 mL of chloroform at room temperature, was added an aqueous solution of NaOH 

(4g, 100 mmol) and tetraethylammonium bromide (10.7g, 50 mmol). The mixture was 

stirred for 12 hours and extracted with chloroform, washed with water, dried, 

concentrated and purified by column chromatography to afford 58b in 65% yield, 'if 

NMR (300 MHz, CDCI3) 8 7.87 (d,J= 6 Hz, 2H), 7.55 (t, J = 6 Hz, 1H), 7.43 (t,J = 6 

Hz, 2H), 5.66-5.52 (m, 1H), 5.02-4.90 (m, 2H), 2.92-2.82 (m, 2H), 2.69-2.61 (m, 1H), 

2.46-2.41 (m, 1H), 2.21-2.01 (m, 2H), 1.91-1.65 (m, 3H), 1.49-1.35 (m, 1H). 

5-Benzovl-bicyclo[3.3.1 lnon-2-en-9-one (59b): 

Allyl ketone 58b (3g, 12.4 mmol) in 75 mL of degassed acetic acid at room 

temperature, was added Mn(OAc)3
s2H20 (8.3g, 31 mmol) and CufOAcjyHzO {2.1 g, 13.6 

mmol). The dark brown mixture was heated for 16 hours at 80 °C, the solution gradually 

turned dark green. After cooling to room temperature, the solution was diluted with 

water and extracted with CH2CI2, washed with saturated aqueous NaHCO], dried, 

concentrated and purified by column chromatography to afford 59b in 60% yield. The 

exocyclic product (60b) was obtained in -10% yield (multiplet at 4.99-5.14 ppm). !II 

NMR (300 MHz, CDCI3) 8 7.71 (d, J = 6Hz, 2H), 7.49 (t, J = 6 Hz, 1H), 7.41 (t, J = 6Hz, 

2H), 6.05 (dt, 9, 3 Hz, 1H), 5.86-5.79 (m, 1H), 3.26 (bd, 18 Hz, 1H), 3.06 (m, 

1H), 2.65 (m, 1H), 2.28-2.18 (m, 2H), 2.11-1.99 (m, 3H), 1.81-1.71 (m 1H). 
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5-Benzoyl-bicycloF3.3.1 lnon-3 -ene-2,9-dione (61b) 

To olefin 59b (0.55g, 2.3 mmol) in 50 mL of benzene, was added Celite (3.45g), 

PDC (3.45g, 9.16 mmol) and then 78% f-BuOOH (1.06g, 9.16 mmol) at room 

temperature. After four hours the mixture was filtered through Celite, concentrated in 

vacuo and purified by column chromatography to afford 61b in 80% yield. *H NMR 

(300 MHz, CDCh) 8 7.73 (d,J=6Hz, 2H), 7.55 (t, J = 6 Hz, 1H), 7.40 (t, J = 6 Hz, 2H), 

7.02 (d, J = 9 Hz, 1H), 6.65 (d, J = 9 Hz, 1H), 3.54 (t, J = 3 Hz, 1H), 2.64 (dt, 12, 6 

Hz, 1H), 2.31-2.26 (m, 1H), 2.16-2.06 (m, 2H), 1.92-1.65 (m, 2H). 

4-Bromo-9-oxo-bicyclo[3.3.1 lnon-2-ene-1 -carboxvlic acid ethyl ester (67) 

To a solution of olefin 59a (0.6g, 2.9 mmol) in 25 mL of CCI4, was added AIBN 

(0.05g, 0.29 mmol) and NBS (0.57g, 3.2 mmol). The flask was fitted with a reflux 

condenser and irradiated with a sun lamp. After 30 minutes (monitored by TLC), the 

mixture was allowed to cool to room temperature and filtered. The crude material was 

purified by column chromatography to yield 67 in 80% yield. 1II NMR (300 MHz, 

CDCI3) 8 6.33 (dd, 6 Hz, 1H), 5.79 (d, 9 Hz, 1H), 4.98 (d, J = 3 Hz, 1H), 4.28 

(q, 6 Hz, 2H), 3.13 (bs, 1H), 2.32 (dt, J = 12, 3 Hz, 1H), 2.21-2.09 (m, 1H), 2.01-

1.61 (m, 4H), 1.33 (t, J = 6 Hz, 3H). 

2.4-Dibromo-9-oxo-bicvcloF3.3.1 lnon-3-ene-l -carboxvlic acid ethyl ester (71) 

To a solution of olefin 59a (0.6g, 2.9 mmol) in 30 mL of CCI4, was added AIBN 

(0.05g. 0.29 mmol) and NBS (1.13g, 6.4 mmol). The flask was fitted with a reflux 

condenser and irradiated with a sun lamp. After 30 minutes (monitored by TLC), the 
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mixture was allowed to cool to room temperature and filtered. The crude material was 

purified by column chromatography to yield 71 in 82% yield, 'il NMR (300 MHz, 

CDCI3) 6 6.72 (1H, dd,y= 12.0, 3.0 Hz), 5.67 (1H, d, J = 12.0 Hz), 3.74 (3H, s), 3.48-

3.51 (1H, m) , 2.42-2.50 (1H, m), 2.08 (1H, tt, J = 12.0, 3.0 Hz), 1.85 (1H, dt, J = 12.0, 

3.0 Hz), 1.31 (3H, s), 1.10-1.20 (1H, m), 1.05 (3H, s); "C NMR (300 MHz, CDCI3) 8 

201.5,168.5, 137.1, 124.6, 65.5, 63.5, 63.1, 52.7, 44.4, 34.2, 30.9, 25.9, 22.9. 

2.4.4-Tribromo-9-oxo-bicvclor3.3.1"[non-2-ene-l-carboxvlic acid ethyl ester (74) and 2% 

Bromo-4.9-dioxo-bicyclor3.3.1 lnon-2-ene-1 -carboxvlic acid ethyl ester (75) 

To a solution of olefin 71 (0.24g, 0.66 mmol) in 20 mL of CCI4, was added AIBN 

(0.01 lg, 0.066 mmol) and NBS (0.15g, 0.825 mmol). The flask was fitted with a reflux 

condenser and irradiated with a sun lamp. After 30 minutes (monitored by TLC), the 

mixture was allowed to cool to room temperature and filtered. A 1:1 mixture of 74 and 

75 were obtained. The crude residue was diluted with water and added aqueous acetic 

acid and refluxed. Then 50 % aqueous AcOH was added and the mixture was boiled for 

2 hours. After aqueous workup, enone 75 was purified by column chromatography in 

95% isolated yield. The conversion of olefin 59a to compound 75 in one step required 

3.5 eq. of NBS and 0.3 eq. of AIBN. (74): 'H NMR (300 MHz, CDCI3) 8 7.18 (1H, s), 

4.24-4.35 (2H, m), 3.56-3.58 (m, 1H), 2.56-2.63 (m, 1H), 1.60-2.31 (m, 5H), 1.30 (t,J = 

9.0 Hz, 3H); "C NMR (300 MHz, CDCI3) S 200.1, 167.7, 139.3, 120.4, 66.4, 63.7, 62.5, 

58.9, 36.9, 34.8, 17.2, 14.2. (75): 'H NMR (300 MHz, CDCI3) 8 7.02 (s, 1H), 4.32 (q, J 

= 6.0 Hz, 2H), 3.41 (t, 3.0 Hz, 1H), 2.36-1.61 (m, 6H), 1.35 (t, J = 9.0 Hz, 3H); 
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NMR (300 MHz, CDCI3) 6 201.5, 193.5, 167.3, 146.3, 137.1, 68.6, 62.7, 61.8, 33.7, 32.9, 

17.8, 14.2. 

2-Allvloxv-4.9-dioxo-bicvclor3.3.llnon-2-ene-l-carboxvlic acid ethyl ester (79) 

To 10 mL of allyl alcohol at 0 °C, was added freshly cut sodium metal (0.005g, 

0.2 mmol). Enone 75 (0.05g, 0.167 mmol) in 1 mL of allyl alcohol was added and the 

mixture was allowed to stir for 1 hour. The solution was diluted with saturated aqueous 

ammonium chloride, extracted with ethyl acetate, dried, concentrated and purified by 

column chromatography. 'H NMR (300 MHz, CDCI3) S 5.98-5.85 (m, 1H), 5.90 (s, 1H), 

5.40-5.33 (m, 2H), 4.54-4.48 (m, 2H), 4.35-4.23 (m, 2H), 3.32 (t, J = 3 Hz, 1H), 2.31-

2.18 (m, 3H), 2.02-1.91 (m, 1H), 1.85-1.63 (m, 2H), 1.28 (t, J = 6 Hz, 3H); NMR 

(300 MHz, CDCI3) 8 203.63, 194.18, 171.78, 167.70, 130.38, 119.63, 107.86, 70.83, 

65.07, 62.05, 61.43, 33.40, 33.27, 18.37, 14.29. 

3-Allvl-2-hydroxv-4.9-dioxo-bicyclo[3.3.11non-2-ene-l-carboxvlic acid ethyl ester (80) 

Allyl enol ether 79 (0.015g, 0.054 mmol) was dissolved in 1 mL of dry toluene 

and placed in a sealed tube, where it was heated at 140 °C for 7 hours. After cooling to 

room temperature, the compound was concentrated and purified by preparative TLC 

(product very polar: R, = 0.1 with [1:1] hexanes: ethyl acetate). The crude yield was 

>80%. However, the isolated yield was 45%. FTIR (film) 1733, 1710, 1678, 1572 cm"1; 
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'H NMR (300 MHz, CDCI3) 6 5.98-5.90 (m, 1H), 5.35-5.21 (m, 2H), 4.18 (q, J = 9.0 Hz, 

2H), 3.53 (t, J = 4.5 Hz, 1H), 3.33 (d, J = 6 Hz, 2H), 2.51-2.31 (m, 2H), 2.14-1.95 (m, 

2H) 1.79-1.73 (m, 2H) 1.27 (t, J = 4.5 Hz, 3H); "C NMR (300 MHz, CDCI3) 8 171.7, 

164.9, 164.5, 154.0, 135.4, 118.01, 110.9, 101.0, 61.8, 43.8, 28.5, 26.5, 20.7, 19.2, 14.4; 

HRMS (EI) m/z calcd for 278.1154, found 278.1161. 

7-Methyl-3-oxo-oct-6-enoic acid methyl ester (81) 

To sodium hydride (3.5g, 87.12 mmol) in 100 mL of THF, was added dimethyl 

carbonate (7.15g, 79.2 mmol) at room temperature. 6-methyl-5-hepten-2-one (5g, 39.6 

mmol) in 15 mL of THF was added dropwise at intervals. The mixture was re fluxed for 

2 hours and stirred at room temperature for 12 hours. The excess Nail was quenched 

with methanol, and the mixture was acidified with 10% aqueous HC1, extracted with 

ether, washed with saturated aqueous NalICO?, brine, dried, and concentrated. Vacuum 

distillation afforded 81 in 85% yield. 'H NMR (300 MHz, CDCI3) S 5.08 (m, 1H), 3.73 

(s, 3H), 3.44 (s, 2H), 2.55 (t, J = 9 Hz, 2H), 2.27 (q,J=6 Hz, 2H), 1.67 (s, 3H), 1.61 (s, 

3H). 

2,2-Dimethyl-6-oxo-cvclohexanecarboxvlic acid ethyl ester (82) 

To compound 81 (3g, 16.3 mmol) in 100 mL of CH2C12 at 0 °C, was slowly added 

SnCLt (6.4g, 24.5 mmol). After 12 hours at room temperature, the mixture was diluted 

with ether, washed twice with 5% HC1, once with water, dried, concentrated and purified 

by column chromatography or distillation. *H NMR (300 MHz, CDCI3) S 3.69 (m, 3H), 
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3.19 (s, 1H), 2.70-2.61 (m, 1H), 2.34-2.25 (m, 1H), 1.98-1.72 (m, 2H), 1.60-1.45 (m, 

2H), 1.10 (s, 3H), 1.02 (s, 3H). 

2-Allvloxv-6.6-dimethvl-cvclohex-l-enecarboxvlic acid ethyl ester (83) 

To compound 82 (2g, 10.87 mmol) in 10 mL of THF was added to a suspension 

of NaH (0.39g, 16.3 mmol) in 100 mL of THF at room temperature. After 1 hour, allyl 

bromide (1.98g, 16.3 mmol) in 5 mL of THF was added to the mixture and heated at 60 

°C for 18 hours. The reaction was quenched slowly with water and diluted with saturated 

aqueous ammonium chloride, extracted with ether, washed with brine, dried, 

concentrated and purified by column chromatography. 'H NMR (300 MHz, 

CDCI3) 8 5.91-5.82 (m, 1H), 5.33-5.14 (m, 2H), 4.26 (dt, 7=6 Hz, 3 Hz, 2H), 3.73 (s, 

3H), 2.18 (t, 6 Hz, 2H), 1.78-1.70 (m, 2H), 1.49-1.41 (m, 2H), 1.12 (s, 6H). 

l-Allyl-2.2-dimethyl-6-oxo-cvclohexanecarboxylic acid ethyl ester (84) 

Enol 83 (2g, 8.4 mmol) was dissolved in 5 mL of dry toluene and heated at 140 

°C in a sealed tube for 3 hours. After concentration, the residue was purified by column 

chromatography. 'H NMR (300 MHz, CDCI3) S 5.88-5.71 (m, 1H), 5.04-4.94 (m, 2H), 

3.65 (s, 3H), 2.91-2.79 (m, 1H), 2.71-2.60 (m, 1H), 2.41-2.31 (m, 2H), 1.90-1.81 (m, 

3H), 1.53-1.45 (m, 1H), 1.28 (s, 3H), 1.38 (s, 3H). 

8.8-Dimethvl-9-oxo-bicyclo["3.3.1 lnon-3-ene-l -carboxvlic acid methyl ester (85) 

To allyl ketone 84 (2g, 8.4 mmol) in 75 mL of degassed acetic acid at room 

temperature, was added Mn(OAc)3*2H20 (5g, 18.5 mmol) and Cu(OAc)2«H20 (1.85g, 9.3 
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mmol). The dark brown mixture was heated for 16 hours at 80 °C, the solution gradually 

turned green. After cooling to room temperature, the solution was diluted with water and 

extracted with CH2CI2, washed with saturated aqueous NaHCO>, dried, concentrated and 

purified by column chromatography to afford 85 in 60% yield. 1I I NMR (300 MHz, 

CDCI3) 6 5.82-5.78 (1H, m), 5.57-5.51 (1H, m), 3.65 (3H, s), 3.07-2.81 (3H, m), 2.06-

1.97 (2H, m), 1.57-1.53 (1H, m), 1.19-1.10 (1H, m), 1.07 (3H, s), 1.03 (3H, s); NMR 

(300 MHz, CDCI3) 8 209.8, 171.2, 129.5, 127.0, 64.8, 51.9, 46.7, 42.8, 36.2, 33.4, 28.5, 

25.6, 25.0. 

2,4-Dibromo-8,8-dimethvl-9-oxo-bicvcloF3.3.nnon-3-ene-l-carboxylic acid methyl ester 

(86) 

To a solution of olefin 85 (0.5g, 2.25 mmol) in 20 mL of CCI4, was added AIBN 

(0.038g, 0.23 mmol) and NBS (0.88g, 4.95 mmol). The flask was fitted with a reflux 

condenser and irradiated with a sun lamp. After 30 minutes (monitored by TLC), the 

mixture was allowed to cool to room temperature and filtered. The crude material was 

purified by column chromatography to yield 86 in 60% yield. 1II NMR (300 MHz, 

CDCI3) 8 6.72 (dd, J = 12.0, 3.0 Hz, 1H), 5.67 (d,J= 12.0 Hz, 1H), 3.74 (s, 3H), 3.48-

3.51 (m, 1H) , 2.42-2.50 (m, 1H), 2.08 (tt, 12.0, 3.0 Hz, 1H), 1.85 (dt, J = 12.0, 3.0 

Hz, 1H), 1.31 (s, 3H), 1.10-1.20 (m, 1H), 1.05 (s, 3H); '^C NMR (300 MHz, CDCI3) 8 

201.5, 168.5, 137.1, 124.6, 65.5, 63.5, 63.1, 52.7,44.4, 34.2, 30.9, 25.9, 22.9. 
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8,8-Dimethvl-4.9-dioxo-bicyclof3.3. llnon-2-ene-l-carboxvlic acid methyl ester (87) 

To a solution of olefin 86 (0.05g, 0.13 mmol) in 3 mL of CCI4, was added AIBN 

(0.002g, 0.013 mmol) and NBS (0.026g, 0.145 mmol). The flask was fitted with a reflux 

condenser and irradiated with a sun lamp. After 30 minutes (monitored by TLC), the 

mixture was allowed to cool to room temperature and filtered. The crude material was 

purified by column chromatography. 'H NMR (300 MHz, CDCI3) 5 7.26 (d,,/ = 12.0 Hz, 

1H) 6.52 (dd,J = 9.0 Hz, 1H), 3.78 (s, 3H), 3.37 (t, J = 3.0 Hz, 1H), 2.16-2.27 (m, 1H), 

1.95-2.02 (m, 1H), 1.81 (dt, J = 12.0, 3.0 Hz, 1H), 1.37 (s, 3H), 1.27-1.34 (m, 1H), 1.11 

(s, 3H); NMR (300 MHz, CDCI3) 6 202.2, 197.4, 168.3, 148.2, 131.9, 68.4, 62.3, 

52.8, 42.2, 34.7, 27.8, 26.4, 22.9. 

2-Bromo-8.8-dimethyl-4.9-dioxo-bicvclo[3.3.1 lnon-2-ene-1 -carboxvlic acid methyl ester 

(88) 

To a solution of olefin 85 (0.61 lg, 2.75 mmol) in 3 mL of CC14 and crushed 

molecular sieves, was added AIBN (0.14g, 0.83 mmol) and dry NBS (1.73g, 9.6 mmol). 

The flask was fitted with a reflux condenser and irradiated with a sun lamp. After 1 hour 

(monitored by TLC), the mixture was allowed to cool to room temperature and filtered. 

The crude material was purified by column chromatography to yield directly 88 in 55% 

yield. 'H NMR (300 MHz, CDCI3) 6 7.05 (s, 1H), 3.79 (s, 3H), 3.36-3.38 (m, 1H), 2.47-

2.49 (m, 1H), 2.15-2.23 (m, 1H), 1.98-2.03 (m, 1H), 1.48 (s, 3H), 1.36-1.45 (m, 1H), 1.31 

(s, 3H); "C NMR (300 MHz, CDCI3) S 200.8, 193.5, 166.7, 146.1, 137.5, 74.0, 60.6, 

52.5, 42.7, 34.7, 28.4, 26.7, 22.2. 
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2-Allvioxv-8.8-dimcthvl-4,9-dioxo-bicyclo[3.3.1 lnon-2-ene-1 -carboxvlic acid methyl 

ester (89) 

To 5 mL of allyl alcohol at 0 C, was added freshly cut sodium metal (0.004g, 

0.15 mmol). Enone 88 (0.04g, 0.127 mmol) in 0.5 mL of allyl alcohol was added and the 

mixture was allowed to stir for 1 hour. The solution was diluted with saturated aqueous 

ammonium chloride, extracted with ethyl acetate, dried, concentrated and purified by 

column chromatography. ]H NMR (300 MHz, CDCI3) S 5.95-5.86 (m, 1H), 5.87 (s, 1H), 

5.40-5.31 (m, 2H), 4.61-4.42 (m, 2H), 3.71 (s, 3H) 3.29-3.27 (m, 1H), 2.17-1.73 (m, 3H), 

1.38-1.28 (m, 1H), 1.28 (s, 3H), 1.26 (s, 3H); "C NMR (300 MHz, CDCI3) S 207.60, 

194.19, 172.83, 167.08, 130.43, 119.43, 107.98, 71.84, 70.71, 60.69, 52.37, 42.39, 35.60, 

28.30, 26.60,21.83. 

3-Allyl-2-hvdroxv-8.8-diniethyl-4.9-dioxo-bicvclor3.3. ilnon-2-ene-l-carboxvlic acid 

methyl ester (90) 

Allyl enol ether 89 (0.03g, 0.10 mmol) was dissolved in 2 mL of dry toluene and 

placed in a sealed tube, where it was heated at 140 °C for 7 hours. After cooling to room 

temperature, the compound was concentrated and purified by preparative TLC. 'H NMR 

(300 MHz, CDCI3) 6 5.94-5.89 (m, 1H), 5.37-5.27 (m, 2H), 3.67 (s, 3H), 3.35-3.33 (m, 

1H), 3.31-3.28 (m, 2H), 2.20-2.16 (m, 1H), 2.01-1.94 (m, 1H), 1.72-1.64 (m, 1H), 1.39-
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1.30 (m, IH), 1.25 (s, 3H), 1.19 (s, 3H); FT-IR (film) 1737, 1701, 1650, 1572 

HRMS (EI) m/z calcd for 292.1311, found 292.1316. 
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CHAPTER II 

Synthesis of the BCD rings of Puupehenone 

Introduction 

The ability of pathogens to genetically mutate allows for variations in their 

mechanisms of action and/or resistance to known treatments. The resulting effect is a 

continuous need for new and different biologically active compounds. With their unique 

and broad biodiversity, the oceans have produced unusual metabolites that possess varied 

and distinctive biological activities. One of these metabolites is the sesquiterpene 

puupehenone. 

The tetracyclic structure of this marine natural product contains a highly reactive 

quinone methide functionality, which engenders the formation of numerous related 

analogs. The synthesis of the BCD rings of puupehenone will be discussed in this 

chapter. 

OH 

.0 

Puupehenone 
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Background 

Puupehenone (1) was first isolated1 by Scheuer and co-workers from the sponge 

Chondrosia chucalla off the coast of Hawaii. This naturally occurring quinone methide 

has since been found in many sponge specimens, such as Heteronema, Hyrtios, and 

Strongylophora in tropical waters around the world. There are many puupehenone-

derived metabolites (Figure 1) as a consequence of the reactive quinone methide moiety 

of the natural product. 15-Cyanopuupehenone3 (2), 20-methoxy-puupehenone4 (3), 

puupehedione5 (4), hyrtenone10 (5), dimer dipuupehedione6 (6) and others also have been 

isolated. All of these compounds display a wide range of biological activities such as, 

antitumor,7 antiviral,8 antituberculosis9 and lipoxygenase10 inhibition. 

Recently, extensive evaluations of biological activity have been focused on 

marine natural products, such as puupehenone. In 2000, Hamann and co-workers9 

reported the effective inhibition of Mycobacterium tuberculosis growth with 

puupehenone and its derivatives. Tuberculosis has emerged as a global emergency with 

estimates of two billion11 people world-wide being infected. Immunodepression diseases, 

such as AIDs, increase12 the incidence of tuberculosis by enabling latent infections to 

clinically progress. The increase of tuberculosis has resulted in the identification of drug-

resistant strains13 of M tuberculosis. Resistance to the current antituberculosis therapy is 

a growing problem. Even with intensive treatment, multi-drug-resistant strains of M. 

tuberculosis are 50-80% fatal. 
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Puupehenone induced 99% inhibition of the causative pathogen M, tuberculosis's 

growth and shows an MIC of 12.5 pg/mL and IC50 value of 2.0 (ig/mL. The high 

percentage of inhibition is only matched by heteronemin, a sclarin-type sesterterpene, and 

is higher than other natural products, such as, massetolide, viscosin, litosterol, kahalalide 

and pseudoteroxazole. 15-Cyanopuupehenone (2) has a growth inhibitory percentage of 

90%, whereas the puupehenone derivatives without the quinone methide moiety (4, 6) 

exhibit little if any inhibition at all. 

OH OH 

NC. 

Puupehenone 2 

MeO, 
.OH 

5 

3 4 

6 

Figure 1. Puupehenone and its derivatives 

The authors of the study concluded the necessity of the quinone methide 

functionality for M. tuberculosis inhibition. The emergence of puupehenones as a good 
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candidate for antituberculosis activity has renewed interest in the natural product and 

other related shikimate sesquiterpenes. 

Recently, puupehenone and other sponge derived terpenoids were reported10 to 

inhibit various lipoxygenases. The lipoxygenases (LO) are a class of iron-containing 

enzymes widely occurring in plants and animals that are implicated in the biosynthesis of 

inflammatory regulators14 which promote human diseases such as, allergy, arthritis, 

asthma and cancer cell proliferation.15 Only a few natural products have been 

investigated as LO inhibitors. Boswelic acid derivatives from frankincense, hinokitiol, 

hexamethoxyflavone from orange peel, resveratrol from grapes, and nordihydroguaiaretic 

acid (NGDA) from the creosote bush are known plant derived LO inhibitors. Very few 

microorganism derived inhibitors are known. LO inhibitors can be classified into two 

distinct groups. The first group of compounds acts as redox agents that reduce the iron 

site. Redox agents reduce ferric lipoxygenase to the inactive ferrous form. Puupehenone 

acts as a redox inhibitor by the interconversion of the quinone methide (1) and ortho-

quinone (7) moieties (Figure 2). 

Ox. 

Red. 

Figure 2. Redox relationship between puupehenone and puupehedione 
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The other groups are competitive or allosteric inhibitors binding to the active site 

of the enzyme. Hyrtenone (5), which was isolated during the course of the study, is a 

non-redox inhibitor of lipoxygenase. The activity of hyrtenone and puupehenone 

indicates that the quinone methide moiety is not completely necessary for this specific 

biological activity. This conclusion allows for different analogs of the marine natural 

product to be targeted. 

Another study reported in 1999 further illustrates the point that the tetracyclic 

structure of puupehenone can be varied and not sacrifice biological activity. In fact, the 

biological activity can increase by a remarkable magnitude. Barrero and co-workers16 

synthesized monoterpenic analogs (Figure 3) of puupehenone and conducted biological 

studies in comparison with sesquiterpene derivatives. 

OH 

8 9 10 

Figure 3. Monoterpenic analogs 

The antitumor activity of the monoterpenic compounds 9 and 10 were assayed 

against cell lines P-388, A-549, HT-29 and MEL-28. Compound 9 showed an increase in 

activity by a magnitude of four as compared to its tetracyclic derivative. Analog 10 had 

similar activities as its tetracyclic derivative. The study supports the notion that the 
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structural constituent responsible for biological activities of these marine natural products 

is the quinone methide moiety and its related functionalities. These preliminary studies 

provide strong support for the beneficial efforts towards understanding marine 

sesquiterpenes and the structural implications for biological activities. 

Although puupehenone's structure was first determined in 1979, it has received 

little synthetic attention. There have been three reports describing the syntheses of 

puupehenone. Trammel first synthesized17 the natural product utilizing a biosynthetic 

cationic cyclization (Scheme 1). Triene 11 was obtained from the alkylation of the 

lithium salt of sesamol with famesyl bromide, followed by acetylation with acetic 

anhydride. Treatment of compound 11 with a Lewis acid effected the construction of the 

drimane unit. To assemble the benzopyran unit, compound 12 was hydrolyzed with 

methanolic potassium hydroxide to expose the phenol which upon addition of pom-

toluene sulfonic acid produced the compound 13. 

P~A P~\ ?-\ 
.0 .0 ,0 

BF3®OEt2 1) KOH 

2) PTSA 

11 12 13 

Scheme 1 

A mixture (2.4:1) of cis- and trans-fused isomers was obtained with the cis-ring 

juncture being the major isomer. Deprotection (Scheme 2) of the ortho-hydroxy groups 



www.manaraa.com

of compound 13 produced catechol 14. 

KOH produced puupehenone. 

94 

Subsequent aerobic oxidation in the presence of 

KOH, MeOH, 0: 

2) H20, MeOH 

Scheme 2 

In 1997, Barrero reported the enantiospecific synthesis18 of (+)-puupehenone. 

Aldehyde 16 was previously made from the same authors from (-)-sclareol (Scheme 3). 

The addition of the lithium salt of aryl bromide 17, which was made in five steps from 

3,4-dihydroxybenzaldehyde, followed by dehydration, produced the complete skeleton 

(18) of puupehenone. 

15  

OBn 

OAc 

Br 

.OBn 
1 ) n-BuLi 

16 

OTBS 

17 

2) Py, SOCI2 

OBn 
OBn 

OTBS 

18 

Scheme 3 
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Compound 18 was then treated with terf-butylammonium fluoride to cleave the 

TBS group and simultaneously eliminated the acetoxy group to produce an or/Zzo-quinone 

methide intermediate, which was then reduced by sodium borohydride to the phenolic 

compound 19 (Scheme 4). Cyclization was facilitated by A,-(phenylseleno)phthalimide 

and tin tetrachloride. Hydrogénation over Raney Ni afforded compound 20, which 

underwent oxidation with pyridinium dichlorochromate to yield (+)-puupehenone. 

OBn OBn OH 

OBn 

OH 
1) NPSP, SnCI. 

2) Raney Ni 

19 

.OH 

PDC 

20 

.OBn 

AcO. 

OTBS 

18 

Scheme 4 

These two previous syntheses constructed the benzopyran moiety with a phenolic 

oxygen with the corresponding olefin. A third synthesis19 reported recently, constructs 

the ring by an oxidative cyclization strategy. Also starting with drimanic aldehyde 21, 

again made from (-)-sclareol, the addition of the lithium salt of compound 22, followed 

by hydrogénation, yielded intermediate 23 (Scheme 5). The key aspect of this synthetic 

strategy was the oxidative cyclization promoted by hypervalent iodide. Catechol 23 was 

treated with [bis(triflouroacetoxy)iodo]benzene and spirocycle 24 was obtained in 64% 

yield. The 5-exo-trig spiroannulation mechanism was favored over the desired 

benzopyran construction. Spirocycle 24 then undergoes rearrangement to the benzopyran 
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intermediate when heated in dioxane, potassium hydride and 18-crown-6. However, the 

benzopyran compound was not obtained, instead in situ oxidation provided (+)-

puupehenone directly, albeit in only 27% yield. 

CHO OBn 

OBn 1 ) f-BuLi 

2) Hg, Pd/C 

21 22 23 

PhlfCOCFab 

KH, 18-crown-6 

Scheme 5 

Although the latter two total syntheses of puupehenone introduce interesting and 

novel chemical transformations, the numerous steps to the drimane aldehyde and low 

yields for the key cyclizations indicate a need for more direct and concise syntheses. 
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Results and Discussion 

With Barrero's disclosure of the increased biological activity of the monoterpenic 

analogs of puupehenone, synthetic efforts were focused on the construction of tricyclic 

compound 2. The retrosynthetic analysis (Figure 4) shows the possible disconnection of 

the carbon-oxygen bond in compound 2 by an oxidative cyclization reaction. The 

carbon-carbon bond in intermediate 3 could be generated from a nucleophilic epoxide 

ring-opening. 

Puupehenone(1) 

Figure 4. Retrosynthetic Analysis 

The presence of an additional functional group (X) would serve two purposes. 

First, the nucleophilic ring-opening of epoxides with carbon nucleophiles is quite limited 

in the literature.20 A group that would enhance the selectivity of the benzylic nucleophile 

would be selected to aid in the reaction. Another purpose of the group would be to allow 

the introduction of additional functionalities, bearing in mind the class of natural products 

containing various derivatives at the benzylic position. 
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The synthesis began with the ring opening of epoxide 4 with various nucleophiles 

(Scheme 6). Lithiated acetonitriles21 have been reported to be excellent nucleophiles for 

such transformations. The reaction of epoxide 4 and various malonyl derived anions 

yielded only starting materials under various conditions. 

N(% xn  

no reaction 

n 
NC^COgEt 

no reaction 

EtOgC^COgEt 
no reaction 

Scheme 6 

With the disappointing results of these reactions, phenylacetonitrile was next 

investigated. Commercially available 4-hydroxy-3-methoxyphenylacetonitrile (Scheme 

7) was treated with two equivalents of base to generate dianion 5, which upon addition of 

epoxide 4 produced a ring-opening product. It was envisioned that the intermediate 6 

formed after the ring-opening could potentially eliminate the cyano group to generate a 

quinone methide intermediate 7, which would set the stage for the subsequent cyclization 

to form benzopyran 8. 
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Scheme 7 

However, the oxidative cyclization product 8 was not produced; the reaction 

afforded only compound 9 in 70% yields. With construction of the bicyclic intermediate 

9, the aryl-oxygen bond connection was investigated. 

Initial attempts to afford the benzopyran compound involved base catalyzed 

cyclization. However, with various bases (Et]N, /-BuOK, NaHCOs) the cyclization did 
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not occur (Scheme 8). Cyclization was also unsuccessful when compound 9 was heated 

at various temperatures. 

OMe 

OH 
Base 

NC 

OH 

9 

Scheme 8 

One of the previously reported syntheses of the natural product puupehenone 

utilized hypervalent iodide (Figure 5) as the oxidation reagent for the cyclization. The 

oxidation produced an unexpected spiroannulated product. 

Phl(COCF3)2 

Figure 5. Oxidation Cyclization via Hypervalent Iodide 
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Cyclization would occur via a conjugate addition onto an orf&o-quinone 

intermediate. The oxidative cyclization regiochemistry of catechol derivative 23 was 

exclusively 5-exo-trig spiroannulation. In order to avoid the spiroannulated product, a 

quinone methide oxidative intermediate 10 would be desired. 

OMe 

OH 

10 

The quinone methide intermediate could allow for the possibility of cyclization 

forming only benzopyran products and not spiroannulated products. The presence of the 

cyano group would increase the possibility of the desired quinone methide formation over 

the ort/zo-quinone tautomer due to the increase in acidity of the benzylic proton. 

The oxidation of compound 9 was investigated with these factors in mind. Under 

different oxidative conditions (AgNOs, AgO, Ag20, DDQ), only starting materials were 

recovered (Scheme 9). 
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Scheme 9 

With the unsuccessful attempts at oxidation of compound 9, the demethylated 

derivative was synthesized in order to affect the desired oxidation. Using BBr», 

demethylation occurred to afford catechol 10 in poor yield (35%) with the majority of the 

starting material decomposing (Scheme 10). 

Scheme 10 

The poor yield of the demethylation of compound 9 required an alternative route 

to produce 11. Since decomposition of compound 9 was the key factor determining the 

yield of catechol 11, demethylation should be performed before the epoxide ring-opening 



www.manaraa.com

103 

step. Treatment of 3,4-dimethoxy phenylacetonitrile with BBr3 (Scheme 11) afforded the 

demethylated product in a 75% yield. The trianion of 3,4-dihydroxyphenylacetonitrile 

was generated with three equivalents of re-butyl lithium. The ring-opening of epoxide 4 

with the trianion produced compound 11 in a 65% yield. 

With catechol 11 in hand, treatment with silver(I) oxide or manganese dioxide 

produced a mixture of unstable oxidative products (Scheme 12). By 'H NMR 

spectroscopy, the structures were determined to be oft/zo-quinone 12 and quinone 

methide 13 tautomers in equal amounts. The orf&o-quinone tautomer could be 

tautomerized to the quinone methide by the addition of triethyl amine at room 

temperature. Unfortunately, the mixture could not be separated or purified due to 

decomposition on silica gel. 

OH 

3 eq. nBuLi 

11 

Scheme 11 
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Ag20 

or 
Mn02 

OH 

NC NC 

OH OH 

11 12 
EtaN 

13 

Scheme 12 

The crude materials were subjected to cyclization conditions (Scheme 13). Acid 

catalyzed conditions, such as BFs'OEt], ZnBn, and PTSA, eliminated the tertiary alcohol 

to form a tetrasubstituted olefin. Base catalyzed conditions (/-BuOK, NaOMe, NaH) 

either afforded only starting materials or in the case of /-BuOK, also gave an elimination 

product. 

O OH OH 

—x—-
+ 

12 13 14 

OH 

Scheme 13 

The propensity of the tertiary alcohol to eliminate and form the extended 

conjugated product prevented the cyclization of intermediates 12 and 13. Using the 
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lability of the alcohol, the cyclization could occur with the oxygen from the shikimate 

unit, instead of from the drimane (Figure 5). Acid catalyzed cyclization of compound 16 

could allow for the formation of the carbon-oxygen bond. 

Compound 16 might be made by the oxidation of catechol 11 with Fremy's salt 

[(KSOs^NO], However, the desired oxidative product was not obtained. The reaction 

with Fremy's salt produced inconsistent results under various conditions (Scheme 14). 

In THF at 0 °C, the reaction afforded only starting materials; however, in acetic acid and 

water, elimination of the tertiary alcohol was observed with no further oxidation. The use 

of potassium dihydrogenphosphate as a buffer in conjunction with Fremy's salt gave 

decomposition of starting materials. 

OH 

W^OH addition of a shikimate oxygen 

OH substitution by a terpenoid oxygen 

16 

Figure 5 



www.manaraa.com

106 

OH O OH 

N( 

OH 

Fremy's 

Salt 

N( 

OH 

11 17 

Scheme 14 

The difficulty in obtaining a trihydroxy compound prompted the usage of a 

different handle at the benzylic position. A thiophenyl group was chosen as a 

replacement for the cyano group. The construction of compound 19 (Scheme 15) began 

with the reduction of 2,4,5-trimethoxybenzaldehyde and subsequent substitution with 

thiophenol catalyzed by zinc iodide.22 

Epoxide 4 was then treated with lithiated compound 19 produce the expected 

ring-opening product compound 20 (Scheme 16). With construction of intermediate 20, 

the oxidative cyclization was investigated. The para-methoxy group of compound 20 

NaBH4 

PhSH 

18 19 

Scheme 15 
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could potentially be oxidatively demethylated to yield para-benzoquinone 21. However, 

oxidation with eerie ammonium nitrate decomposed the starting materials. The next 

approach involved the demethylation of compound 20 with boron tribromide. Once 

again, the decomposition of starting materials was observed. The fragility of compound 

20 was evident under these conditions. 

n-BuLi 

4 

OH 
CAN 
X OH 

19 20 21 

X BBra 

OH 

OH 

22 

Scheme 16 

With these disappointing results, the strategy to construct the tricyclic quinone 

methide was revised. The construction of a benzopyran from a heteroatom Diels-Alder 

reaction was reported by Buchi in the synthesis23 of gymnitrol (Scheme 17). Quinoketal 
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23 when treated with BhVOEt? yielded an or/to-quinone methide intermediate, which 

was trapped with 1,2-dimethylcyclopentene to afford benzopyran 24. 

MeO 
MeO OMe 

23 

+ 

Lewis Acid 

36% 

Scheme 17 

MeO' 

OMe 

24 

Recently, Tins and co-workers24 utilized an intramolecular Diels-Alder reaction to 

construct the benzopyran moiety of canniboid natural products (Scheme 18). Benzylic 

alcohol 25 when treated with trifluoroacetic acid yielded tricyclic compound 27 in a 76% 

yield. 

R 

R f 
TFA 

76% 

25 27 

26 

Scheme 18 
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The acid catalyzed dehydration of benzyl alcohol 25 was facilitated by the 

presence of the ortho-hydroxy group. Reaction intermediate 26 was an or/Zzo qui none 

methide, which readily underwent a [4+2] cycloaddition to give benzopyran 27. The 

generation and trapping of orif/zo-quinone methides by various methods have been 

reported.^ 

To synthesize the targeted benzopyran moiety 28, an intermolecular heteroatom 

Diels-Alder reaction might construct both carbon-carbon and carbon-oxygen bonds 

(Figure 6). The precursor needed for the Diels-Alder reaction would be phenol 29. The 

ortho-hydroxy groups of phenol 24 might need to be protected selectively to ensure the 

generation of an ortho-quinone methide and not the possible para-quinone methide 

intermediate. 

-VW> "WV 

Figure 6. Retrosynthetic Analysis of Diels-Alder strategy 

The synthesis began with the attempted construction of phenol 31. Starting with 

commercially available 1,3,4-trimethoxybenzaldehyde, selective demethylation with 

boron trichloride afforded compound 30 in 85% yield (Scheme 19). However, reduction 

of aldehyde 30 was unsuccessful with numerous attempts using sodium borohydride and 
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lithium aluminum hydride under various solvents and temperatures as described in the 

literature.25 

OMe 

OHC 

OMe OMe 

OMe 
BCIi 

OHC 
OMe 

OMe 

HO. 

OMe 

Scheme 19 

The reduction produced uncharacterizable and inseparable oligomers. The 

presence of the alkoxy groups at the ortho and para positions enhances the dehydration to 

form various byproducts. With the problematic synthesis of compound 31 under these 

conditions, an alternative route was explored. Hydroxymethylation of phenols under 

basic27 and acidic28 conditions are known to selectively occur ortho to the hydroxy group. 

When 3,4-dimethoxyphenol was treated with calcium oxide (Scheme 20) in water and 

formalin, the desired compound 31 was produced. 
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Scheme 20 

Benzyl acohol 31 was unstable to silica gel column chromatography and readily 

decomposed at room temperature. Once made, compound 31 was added to 1-

methylcyclohexene and treated with trifluoroacetic acid (Scheme 21). After heating, the 

reaction afforded the tricyclic benzopyran 32 in 45% yields over two steps from 3,4-

dimethoxyphenol . 

Scheme 21 

The [4+2] cycloaddition generated both the carbon-carbon and carbon-oxygen 

bonds with a cis ring juncture, which was determined by a NOESY experiment. With 

the construction of benzopyran 32, demethylation (Scheme 22) with boron tribromide 
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afforded catechol 33 in 60% yields. With the dihydroxy compound synthesized, the final 

oxidation to the quinone methide was investigated. 

Scheme 22 

The previous syntheses of the monoterpenic analogs indicated a variety of 

oxidants could effect the generation of the quinone methide moiety. The use of PDC 

afforded an inseparable mixture of the desired quinone methide 34 and ortho-quinone 35 

(Scheme 23). 

Scheme 23 
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Methoxy-substituted intermediate 36 can only form the desired quinone methide 

37 (Figure 7). The selective protection of catechol 33 would be difficult. The methoxy 

group in compound 36 would need to be introduced prior to the Diels-Alder reaction. 

OMe 

OMe 

Ox. 

36 

37 

38 

Figure 7. Quinone methide oxidation 

The synthesis of compound 36 began with the benzylation of isovanillin with 

benzyl bromide and potassium carbonate in ethanol (Scheme 24). The protection 

afforded benzaldehyde 39 in quantitative yields. The Baeyer-Villiger oxidation of 

benzaldehyde 39, followed by hydrolysis with aqueous sodium hydroxide, produced the 

selectively protected phenol 40 in a 80% yield. 
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OH OBn OBn 

MeO BnBr MeO. 

CHO K2C°3 

1 ) mCPBA MeO. 

CHO Na0H OH 

39 40 

Scheme 24 

After the construction of compound 40, the hydroxymethylation with formalin 

and calcium oxide provided benzyl alcohol 41 (Scheme 25). The key Diels-Alder 

reaction afforded benzopyran 42 in a 40% yield. 

OMe OMe 

OBn 
CaO, H2Q 

o 

40 

OBn 
TFA 

a 

OMe 
OBn 

42 

Scheme 25 

Catalytic hydrogénation of compound 42 produced compound 43 in quantitative 

yield (Scheme 26). The oxidation of compound 43 was then investigated. The use of 

silvcr(I) oxide has been reported by Winstein29 and others30 to generate quinone 

methides. However, when compound 43 was treated with silver(I) oxide, an inseparable 

mixture of uncharacterized products was obtained. Trammel observed polymeric 
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products with silver oxide oxidation.17 The use of pyridinium dichlorochromate did not 

produce the desired quinone methide 44. Compound 43, when treated with 2,3-dichloro-

5,6-dicyano-1,4-benzoquinone (DDQ) afforded the desired product in 95% isolated yield. 

The structure of 44 was confirmed by 111 NMR, l3C NMR, H RMS, and UV spectrometry. 

OMe 

44 

Scheme 26 

In summary, the synthesis of the quinone methide BCD rings of puuphenone was 

achieved using an intermolecular heteroatom Diels-Alder reaction. The reaction 

proceeded through an ortho-quinone methide intermediate, which was produced from the 

dehydration of an orf/zohydroxy benzyl alcohol derivative. 
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Experimental 

Unless otherwise noted, materials were obtained from commercial 

suppliers and used without purification. Tetrahydrofuran and diethyl ether were distilled 

from sodium benzophenone ketyl. Dichloromethane, benzene and diisopropylamide 

were distilled over calcium hydride. All experiments were performed under argon 

atmosphere unless otherwise noted. Organic extracts were dried over anhydrous 

magnesium sulfate. Infrared spectra were obtained on a Perkin-Elmer model 1320 

spectrophotometer. Nuclear magnetic resonance experiments were performed with either 

a Varian 300 MHz or Broker 400 MHz instrument. All chemical shifts are reported 

relative to CDC I; (7.26 ppm for 1II and 77.06 ppm for 13C), unless otherwise noted. 

Coupling constants (J) are reported in Hz with abbreviations: s = singlet, d = doublet, t = 

triplet, q = quartet, m=multiplet. High resolution mass spectra were recorded on a Kratos 

model MS-50 spectrometer and low resolution mass spectra were performed with a 

Finnegan 4023 mass spectrometer. Standard grade silica gel (60 Â, 32-63 fj.m) was used 

for flash column chromatography. 
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1 -Methyl-7-oxa-bicvclof4.1 .Olheptane (4) 

To 1 -methyl-1 -cyclohcxcnc (10g, 0.1 mmol) in 300 mL of water at room 

temperature, was added NaHCOi (13g, 0.15 mol) and /«CPBA (23.3g, 0.13 mol). The 

mixture was stirred at room temperature for 3 hours, monitored by TLC, and then filtered 

and extracted with CH2C12, dried, concentrated and purified by column chromatography. 

'H NMR (300 MHz, CDCI3) 8 2.85 (d, J = 3 Hz, 1H), 1.82-1.74 (m, 3H), 1.60-1.53 (m, 

1H), 1.35-1.26 (m, 2H), 1.20 (s, 3H), 1.19-1.08 (m, 2H); NMR (300 MHz, CDCI3) 8 

59.66, 5.64, 30.01, 24.89, 24.13, 20.18, 19.81. 

(4-Hvdroxv-3-methoxvphenvl')-(2-hvdroxv-2-methvlcvclohexvl')-acetonitrile (9) 

To 4-hydroxy-3-methoxy phenylacetonitrile (lg, 6.12 mmol) in 200 mL of THF 

at -78 °C, was added 2.5 M n-BvlA (5.6 mL, 14.1 mmol) dropwise. After 30 minutes, 

epoxide 4 (0.83g, 7.4 mmol) in 2 mL of THF was slowly added and the mixture was 

slowly warmed to room temperature. The mixture was added saturated aqueous 

ammonium chloride after the starting materials were consumed (monitored by TLC). 

The organic layer was extracted with ethyl acetate, washed with brine, dried, 

concentrated and purified by column chromatography (inseparable mixture of 2 

stereoisomers). 'H NMR (300 MHz, CDCI3) 8 6.84-6.78 (m, 2H), 6.71 (d, 6 Hz, 1H), 

4.43 (s, 1H), 3.84 (s, 3H), 1.64-1.01 (m, 9H), 1.36 (s, 3H); "C NMR (300 MHz, CDCI3) 

8 145.67, 145.17, 127.18, 122.65, 120.53, 110.63, 110.35, 72.78, 56.11, 52.36, 42.78, 

35.68,28.31, 25.65, 23.75, 21.53. 
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3,4-Dihydroxy phenvlacetonitrile 

To 3,4-dimethoxy phenylacetonitrile (lg, 3.5 mmol) in 40 mL of CILCli at -78 

°C, was added slowly 1.0 M boron tribromide (11.4 mL, 11.6 mmol). After 30 minutes 

at -78 °C, the mixture was warmed to room temperature and stirred for 4 hours. The 

solution was diluted with CI I2CI2 and water was slowly added. The aqueous layer was 

extracted with CH2C12 and the combined organic layers were washed with saturated 

NaHCOi, brine, dried, concentrated and purified by column chromatography. *H NMR 

(300 MHz, CDCI3) 8 6.83 (bd, J = 6 Hz, 2H), 6.73 (d, J = 6 Hz, IH), 3.63 (s, 2H); 

NMR. (300 MHz, CDCI3) 8 144.04,143.36, 122.60, 120.67, 115.89, 115.09, 23.00. 

(3.4-Dihvdro.\y-phenvl)-(2-hvdroxv-2-methvl-cvclohexvl)-acetonitrile (11) 

To 3,4-dihydroxy phenylacetonitrile (0.5g, 3.35 mmol) in 35 mL of THF at -78 

°C, was added 2.5 M n-BuLi (4.7 mL, 11.7 mmol) dropwise. After 30 minutes, epoxide 

4 (0.45g, 4.0 mmol) in 2 mL of THF was slowly added and the mixture was slowly 

warmed to room temperature. The mixture was added saturated aqueous ammonium 

chloride after the starting materials were consumed (monitored by TLC). The organic 

layer was extracted with ethyl acetate, washed with brine, dried, concentrated and 

purified by column chromatography. The product was insoluble in CDCI3. 'H NMR 

(300 MHz, CD3COCD3) 8 6.87-6.68 (m, 2H), 4.48 (s, IH), 1.77-1.00 (m, 9H), 1.41 (s, 

3H); "C NMR (300 MHz, CD3COCD3) 8 145.00, 144.65, 129.33, 128.48, 119.07, 

115.61, 114.97, 71.56, 54.71, 43.20, 35.03, 25.88, 24.98, 23.81, 21.25. 
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(3,4-Dioxo-cvcloliexa-l,5-dienvl)-(2-hydroxv-2-methvl-cvclohexyl)-acetonitrile (12) and 

(2-Hydroxv-2-methyl-cyclohexyl')-(3-hvdroxv-4-oxo-cvclohexa-2,5-dienylidene)-

acetonitrile (13) 

To compound 11 (O.lg, 0.38 mmol) in 10 mL of THF at room temperature, was 

added Ag20 (0.89g, 3.8 mmol). After 3 hours the mixture was filtered through Celite and 

concentrated. The crude products were a 1:1 mixture of isomers 12 and 13. The crude 

mixture in 10 mL of THF at room temperature was added EtjN (0.15g, 1.52 mmol). 

After 2 hours, saturated aqueous ammonium chloride was added to the solution, and the 

mixture was extracted with ethyl acetate, dried and concentrated to afford 13. 12: 111 

NMR (300 MHz, CD3COCD3) 8 7.91 (dd, 12 Hz, IH), 6.92 (d, V = 3 Hz, IH), 6.43 

(d, J = 6 Hz, IH), 3.10 (m, IH), 1.91-1.33 (m, 8H), 1.31 (s, 3H). 13: 'H NMR (300 

MHz, CD3COCD3) 8 7.76 (dd, / = 9 Hz, IH), 7.08 (d,J= 1Hz, IH), 6.61 (d, J = 12 Hz, 

IH), 3.71-3.51 (m, IH), 3.00 (m, IH), 1.90-1.35 (m, 8H), 1.28 (s, 3H). 

(2.4,5-TrimethoxyphenyD-methanol (18) 

To 2,4,5-trimethoxybenzaldehyde (lg, 5.1 mmol) in 50 mL of EtOH at room 

temperature, was slowly added NaBH4 (0.29g, 7.7 mmol). After 2 hours, ethanol was 

removed by vacuum and the mixture was diluted with CH2CI2, and water was slowly 

added. The organic layer was separated and the aqueous layer was extracted with 

CH2C12, and the combined organic layers were washed with brine, dried and 

concentrated. The crude product was used without purification. 'H NMR (300 MHz, 

CDCI3) 8 6.84 (s, IH), 6.51 (s, IH), 4.60 (s, 2H), 3.87 (s, 3H), 3.82 (s, 6H). 
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l,2,4-Trimethoxy-5-phenylsulfanylmetliyl-benzene (19) 

To benzyl alcohol 18 (lg, 5.0 mmol) in 50 mL of dichloroethane at room 

temperature, was added Znl2 (0.84g, 2.5 mmol) followed by thiophenol (0.67g, 6.05 

mmol) slowly. After 30 minutes, the solution turned light blue and was added water, 

extracted with CH2CI2, dried, concentrated and purified by column chromatography, 'if 

NMR (300 MHz, CDCI3) 8 7.37-7.27 (m, 4 H), 7.19 (t, J = 6 Hz, IH), 6.82 (s, IH), 6.69 

(s, IH), 4.12 (s, 2H), 3.82 (s, 6H), 3.66 (s, 3H); NMR (300 MHz, CDCI3) 8 152.09, 

149.92, 143.31, 137.56, 129.60, 128.98, 128.48, 126.07, 116.92, 115.43, 98.47, 56.26, 

56.08,55.69. 

l-Mcthyl-2-fphenvlsulfanyl-(2.4.5-trimethoxv-phenvl')-methvll-cvclohexanol (20) 

To compound 19 (O.4g, 1.4 mmol) in 20 mL of THF at -78 °C, was added 2.5 M 

n-BuLi (0.67mL, 1.68 mmol) dropwise. After 30 minutes, epoxide 4 (0.2g, 1.82 mmol) 

in 1 mL of THF was slowly added and the mixture was slowly warmed to room 

temperature. The mixture was added saturated aqueous ammonium chloride after the 

starting materials were consumed (monitored by TLC). The organic layer was extracted 

with ethyl acetate, washed with brine, dried, concentrated and purified by column 

chromatography. The product was insoluble in CDCI3. 'li NMR (300 MHz, CDCI3) 8 

7.21 (s, IH), 7.18-7.06 (m, 5H), 6.42 (s, IH), 4.96 (d,V = 3 Hz, IH), 3.85 (s, 3H), 3.82 (s, 

3H), 3.74 (s, 3H), 2.14-2.05 (m, IH), 1.87-1.11 (m, 8H), 1.35 (s, 3H); NMR (300 

MHz, CDCI3) 8 149.83, 148.57, 143.40, 136.02, 131.17, 128.69, 126.46, 123.43, 112.92, 

97.52, 73.99, 56.72, 56.69, 56.31, 54.51, 46.88,43.27, 27.26, 26.65, 24.27, 21.95. 
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2-Hydroxy-4,5 -dimethoxv-benzaldehyde (30) 

To 2,4,5-trimethoxy benzaldehyde (lg, 5.1 mmol) in 50L of CHiCl: at 0 °C, was 

added dropwise 1.0 M BCI3 (7.6 mL, 7.65 mmol). The mixture was stirred overnight and 

was added water slowly, extracted with CH2CI2, dried, concentrated and purified by 

column chromatography. The compound was spectrally identical to the commercially 

available material. 

2-Hvdroxvmethvl-4.5-dimethoxv-phenol (31) 

To 3,4-dimethoxy phenol (l.Og, 6.5 mmol) in 20 mL of water at room 

temperature, was added 37% fonnalin (1.4 mL, 13.4 mmol) and followed by calcium 

oxide (0.18g, 3.3 mmol). After an hour (monitored by TLC), saturated aqueous 

ammonium chloride was added and the organic layer was extracted with ether, dried, 

concentrated and used without purification. *H NMR (300 MHz, CDCI3) § 6.54 (s, 1H), 

6.51 (s, 1H), 4.80 (s, 2H), 3.84 (s, 3H), 3.80 (s, 3H). 

6,7-Dimethoxv-4a-methvl-2.3.4,4a.9.9a-hexahvdro-lH-xanthene (32) 

To crude compound 31 (0.6g, 3.26 mmol) in 40 mL of CHCI3 at 0 °C, was added 

1 -methyl-1 -eyelohexene (0.47g, 4.9 mmol) followed by dropwise addition of 

trifluoroacetic acid (0.45g, 3.91 mmol). The mixture was boiled for 3 hours (monitored 

by TLC). After cooling to room temperature, the solution was diluted with water and 

extracted with CH2CI2, dried, concentrated and purified by column chromatography 

(product was very nonpolar) to afford benzopyran 32 in 45 % yields (from 3,4-dimethoxy 

phenol). The cis-ring juncture was assigned by NOESY spectroscopy. 1H NMR (300 
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MHz, CDCb) 8 6.52 (s, 1H), 6.38 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.03 (dd, 12, 6 

Hz, 1H, 2.25 (d, / = 18 Hz, 1H), 1.94-1.90 (m, 1H), 1.67-1.24 (m, 8H), 1.19 (s, 3H); 

NMR (300 MHz, CDCI3) 5 148.44, 146.91, 142.82,112.79, 110.31, 101.25, 74.93, 56.63, 

55.99, 38.72, 37.21, 29.21, 28.68,25.84, 25.58, 21.94. 

10a-Mcthvl-5.7.8.8a.9.10a-hexahydro-6H-xanthene-2.3-diol (33) 

To compound 32 (0.05g, 0.19 mmol) in 5 mL of CH2CI2 at -78 °C, was added 

slowly 1.0 M boron tribromide (0.57 mL, 0.57 mmol). After 30 minutes at -78 °C, the 

mixture was warmed to room temperature and stirred for 4 hours (monitored by TLC). 

The solution was diluted with CH2CI2 and slowly added water. The aqueous layer was 

extracted with CH2CI2 and the combined organic layers were washed with saturated 

NaHC03, brine, dried, concentrated and purified by column chromatography. \h NMR 

(300 MHz, CDCI3) 6 6.69 (s, 1H), 6.37 (s, 1H), 3.00 (dd, J = 15, 6 Hz, 1H), 2.21 (d, J = 

18 Hz, 1H), 1.91- 1.10 (m, 9H), 1.21 (s, 3H); "C NMR (300 MHz, CDCI3) S 147.22, 

142.94, 137.02, 116.21, 111.87, 104.34, 74.91, 38.65, 37.14, 29.05, 28.62, 25.81, 25.56, 

21.90; HRMS (EI) m/z calcd for 234.1256, found 234.1259. 

2-Hvdroxv-10a-methvl-5.6.7,8,8a,10a-hexahvdro-xanthen-3-one (34) 

To compound 33 (0.02g, 0.085 mmol) in 2 mL of CH2CI2 at room temperature 

was added PDC (0.05g, 0.13 mmol). After 4 hours (monitored by TLC), the mixture was 

filtered through Celite and concentrated to afford a mixture of products, 'ii NMR (300 

MHz, CDCI3) 6 7.21 (d, 1.5 Hz, 1H), 6.35 (s, 1H), 5.95 (d,J=3 Hz, 1 H), 2.18-2.10 
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(m, 1H), 1.98-1.21 (m, 6H), 1.19 (s, 3H); HRMS (EI) m/z calcd for 232.1010, found 

232.1102. 

3-Benzvloxv-4~methoxv-benzaldehvde (39) 

To isovanillin (1.0g, 6.6 mmol) in 75 mL of EtOH at room temperature, was 

added K2CO3 (1.1 g, 7.9 mmol) and benzyl bromide (1.18g, 6.93 mmol). The mixture 

was stirred for 24 hours, filtered and concentrated. The residue was dissolved in ether 

and washed with cold 10% NaOH (2X), the aqueous layer was acidified with 10% HC1 

and extracted with ether, dried, concentrated and purified by column chromatography. 

'H NMR (300 MHz, CDCI3) 8 9.80 (s, 1H), 7.45-7.28 (m, 7H), 6.96 (d, / = 9 Hz, 1H), 

5.15 (s, 2H), 3.92 (s, 3H); NMR (300 MHz, CDCI3) 8 190.99, 155.27, 148.92, 

136.55, 130.22, 128.85, 128.33, 127.71, 127.07, 111.59, 111.03,71.04, 56.37. 

3-Benzvloxv-4-methoxv-phenol (40) 

To benzaldehyde 39 (lg, 4.13 mmol) in 60 mL of CH2CI2 at 0 °C, was added 

mCPBA (1.43g, 4.26 mmol). After 4 hours at room temperature, the mixture was filtered 

and the organic layer was washed with NaHCO?, brine and concentrated. The residue 

was taken up in 10 mL of ethanol and added 10% NaOH (40 mL). The solution was 

heated at 60 °C for 15 minutes and then cooled to room temperature. The solution was 

then acidified with 10% HC1 and extracted with ether, dried, concentrated and purified by 

column chromatography, 'll NMR (300 MHz, CDCI3) 5 7.41-7.26 (m, 5H), 6.74 (d,./ = 

9 Hz, 1H), 6.46 (d,J = 1 Hz, 1H), 6.35 (dd, 9, 3 Hz, 1H), 5.05 (s, 2H), 3.81 (s, 3H); 
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"C NMR (300 MHz, CDCI3) 6 150.51, 149.31, 143.78, 137.08, 128.76, 128.09, 127.54, 

113.71,106.91, 103.16, 71.08, 57.15. 

5-Benzvloxy-2-hvdroxvmethvl-4-methoxv-phenol (41) 

To compound 40 (0.8g, 3.5 mmol) in 20 mL of water at room temperature was 

added 37% formalin (0.77g, 7.35 mmol) followed by calcium oxide (0.098g, 1.75 mmol). 

After an hour (monitored by TLC), saturated aqueous ammonium chloride was added and 

the organic layer was extracted with ether, dried, concentrated and used without 

purification. 'H NMR (300 MHz, CDCI3) 8 7.43-7.30 (m, 5H), 6.56 (s, 1H), 6.51 (s, 1H), 

5.10 (s, 2H), 4.76 (s, 2H), 3.82 (s, 3H). 

6-Benzyloxy-7-methoxv-4a-methyl-2.3,4.4a,9,9a-hexahydro-lH-xanthene (42) 

To crude compound 41 (0.4g, 1.53 mmol) in 20 mL of CHCI3 at 0 °C, was added 

1 -methyl-1 -cyclohexene (0.22g, 2.3 mmol) followed by dropwise addition of 

trifluoroacetic acid (0.035g, 1.84 mmol). The mixture was boiled for 3 hours (monitored 

by TLC). After cooling to room temperature, the solution was diluted with water and 

extracted with CH2C12, dried, concentrated and purified by column chromatography 

(product was very nonpolar) to afford benzopyran 42 in 40% yield (from 40). !H NMR 

(300 MHz, CDCI3) 8 7.50-7.28 (m, 5H), 6.57 (s, 1H), 6.43 (s, 1H), 5.08 (s, 2H), 3.82 (s, 

3H), 3.04 (dd,J= 15, 6 Hz, 1H), 2.26 (d,J= 15 Hz, 1H), 1.98-1.25 (m, 9H), 1.19 (s, 3H); 

NMR (300 MHz, CDCI3) 8 148.02, 147.10, 143.48, 137.53, 128.70, 127.94, 127.61, 

113.93, 111.17, 103.49, 74.88, 71.07, 57.06, 38.69, 37.20, 29.23, 28.67, 25.82, 25.57, 

21.92 
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2-Methoxv-10a-methyl-5.7.8,8a.9.10a-hexahvdro-6H-xanthen-3-ol (43) 

To compound 42 (O.lg, 0.3 mmol) in 5 mL of THF at room temperature was 

added Pd/C (0.032g, 0.03 mmol). The flask was flushed with hydrogen gas for 5 minutes 

and capped with a large balloon. After 1 hour (monitored by TLC), the mixture was 

filtered through Celite, concentrated and purified by column chromatography. 'H NMR 

(300 MHz, CDCk) ô 6.50 (s, 1H), 6.41 (s, 1H), 3.81 (s, 3H), 3.03 (dd, J = 15, 6 Hz, 1H), 

2.24 (d, J = 18 Hz, 1H), 1.94-1.25 (m, 9H), 1.20 (s, 3H); "C NMR (300 MHz, CDCI3) 8 

147.50, 144.97, 140.76, 112.05, 110.35, 103.79, 74.75, 56.70, 38.67, 37.19, 29.34, 28.64, 

25.84,25.52,21.89; HRMS (EI) m/z calcd for 248.1412, found 232.1418. 

2-Methoxy-10a-methvl-5.6,7,8,8a,10a-hexahvdro-xanthen-3-one (44) 

To compound 43 (0.02g, 0.08 mmol), in 5 mL of dioxane at room temperature 

was added DDQ (0.022g, 0.096 mmol). After 2 hours (monitored by TLC), the mixture 

was filtered through Celite, concentrated and purified by column chromatography to 

afford 44 in 95% yield. 'H NMR (300 MHz, CDCI3) 6 7.23 (bs, 1H), 6.46 (s, 1H), 6.18 

(s, 1H), 3.89 (s, 3H), 2.22 (dd, J = 12, 3 Hz, 1H), 2.05-2.00 (m, 1H), 1.75-1.30 (m, 8H), 

1.28 (s, 3H); "C NMR (300 MHz, CDCI3) 8 195.61, 156.35, 153.59, 142.01, 111.47, 

106.76, 103.71, 79.77, 56.52, 52.50, 37.09, 26.85, 24.80, 24.16, 21.65; UV (CH2CI2) 

Xmax 240, 272, 335 mn; HRMS (EI) m/z calcd for 246.1256, found 232.1258. 
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